
Natural Language Processing 
with Deep Learning 

  

CS224N/Ling284

Lecture 8:  
 Recurrent Neural Networks

Christopher Manning and Richard Socher

2/2/17

Organization

2/2/17

Extra	project	office	hour	today	after	lecture

Overview

2/2/17

• Traditional	language	models	

• RNNs	

• RNN	language	models	

• Important	training	problems	and	tricks	
• Intuition	for	vanishing	gradient	problem	with	toy	example	
• Vanishing	and	exploding	gradient	problems	

• RNNs	for	other	sequence	tasks	

• Bidirectional	and	deep	RNNs

Language	Models

2/2/17

A	language	model	computes	a	probability	for	a	sequence	
of	words:	

• Useful	for	machine	translation	

• Word	ordering: 
p(the	cat	is	small)	>	p(small	the	is	cat)	

• Word	choice: 
p(walking	home	after	school)	>	p(walking	house	after	
school)

Traditional	Language	Models

2/2/17

• Probability	is	usually	conditioned	on	window	of	n	
previous	words	

• An	incorrect	but	necessary	Markov	assumption!	

• To	estimate	probabilities,	compute	for	unigrams	and	
bigrams	(conditioning	on	one/two	previous	word(s):

Traditional	Language	Models

2/2/17

• Performance	improves	with	keeping	around	higher	n-
grams	counts	and	doing	smoothing	and	so-called	
backoff	(e.g.	if	4-gram	not	found,	try	3-gram,	etc)	

• There	are	A	LOT	of	n-grams! 
à Gigantic	RAM	requirements!		

• Recent	state	of	the	art:	Scalable	Modified	Kneser-Ney	
Language	Model	Estimation	by	Heafield	et	al.:	 
“Using	one	machine	with	140	GB	RAM	for	2.8	days,	we	
built	an	unpruned	model	on	126	billion	tokens”

Recurrent	Neural	Networks!

2/2/17

• RNNs	tie	the	weights	at	each	time	step	

• Condition	the	neural	network	on	all	previous	words	

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

Recurrent	Neural	Network	language	model

2/2/17

Given	list	of	word	vectors:	

At	a	single	time	step:

xt ht

ßà

Recurrent	Neural	Network	language	model

Main	idea:	we	use	the	same	set	of	W	weights	at	all	time	
steps!	

Everything	else	is	the	same:	

	 				is	some	initialization	vector	for	the	hidden	layer	
at	time	step	0	

								is	the	column	vector	of	L	at	index	[t]	at	time	step	t

2/2/17

Recurrent	Neural	Network	language	model

2/2/17

				 							is	a	probability	distribution	over	the	vocabulary	

Same	cross	entropy	loss	function	but	predicting	words	
instead	of	classes

Recurrent	Neural	Network	language	model

2/2/17

Evaluation	could	just	be	negative	of	average	log	
probability	over	dataset	of	size	(number	of	words)	T:	

But	more	common:	Perplexity:				2J	

Lower	is	better!

Training	RNNs	is	hard

• Multiply	the	same	matrix	at	each	time	step	during	forward	prop	

• Ideally	inputs	from	many	time	steps	ago	can	modify	output	y	
• Take										for	an	example	RNN	with	2	time	steps!	Insightful!

2/2/17

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

The	vanishing/exploding	gradient	problem

• Multiply	the	same	matrix	at	each	time	step	during	backprop

2/2/17

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

The	vanishing	gradient	problem	-	Details

• Similar	but	simpler	RNN	formulation:	

• Total	error	is	the	sum	of	each	error	at	time	steps	t	

• Hardcore	chain	rule	application:

2/2/17

The	vanishing	gradient	problem	-	Details

• Similar	to	backprop	but	less	efficient	formulation	
• Useful	for	analysis	we’ll	look	at:	

• Remember:	
• More	chain	rule,	remember:	

• Each	partial	is	a	Jacobian:

2/2/17

The	vanishing	gradient	problem	-	Details

• 	

2/2/17

Why	is	the	vanishing	gradient	a	problem?

• The	error	at	a	time	step	ideally	can	tell	a	previous	time	step	from	
many	steps	away	to	change	during	backprop

2/2/17

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

The	vanishing	gradient	problem	for	language	models

• In	the	case	of	language	modeling	or	question	answering	words	
from	time	steps	far	away	are	not	taken	into	consideration	when	
training	to	predict	the	next	word	

• Example:	  
 
Jane	walked	into	the	room.	John	walked	in	too.	It	was	late	in	the	
day.	Jane	said	hi	to	____

2/2/17

Structured Training for Neural
Network Transition-Based
ParsingDavid	Weiss,	Chris	Alberti,	Michael	Collins,	Slav	Petrov

Presented	by:		Shayne	Longpre

2/2/17

What is SyntaxNet?
❖ 2016/5: Google announces the “World’s Most Accurate Parser Goes

Open Source”
❖ SyntaxNet (2016): New, fast, performant Tensorflow framework for

syntactic parsing.
❖ Now supports 40 languages -- Parse McParseface’s 40 ‘cousins’

2/2/17

What is SyntaxNet?

+ Unlabelled Data
+ Tune Model
+ Structured

Perceptron & Beam
Search

Chen & Manning
(2014)

Weiss et al. (2015) Andor et al. (2016)

+ Global Normalization

SyntaxNet

❖ 2016/5: Google announces the “World’s Most Accurate Parser Goes

Open Source”
❖ SyntaxNet (2016): New, fast, performant Tensorflow framework for

syntactic parsing.
❖ Now supports 40 languages -- Parse McParseface’s 40 ‘cousins’

2/2/17

What is SyntaxNet?

+ Unlabelled Data
+ Tune Model
+ Structured

Perceptron & Beam
Search

Chen & Manning
(2014)

Weiss et al. (2015) Andor et al. (2016)

+ Global Normalization

SyntaxNet

❖ 2016/5: Google announces the “World’s Most Accurate Parser Goes

Open Source”
❖ SyntaxNet (2016): New, fast, performant Tensorflow framework for

syntactic parsing.
❖ Now supports 40 languages -- Parse McParseface’s 40 ‘cousins’

2/2/17

3 New Contributions

1. Leverage Unlabelled Data -- “Tri-Training”

2. Tuned Neural Network Model

3. Final Layer: Structured Perceptron w/ Beam Search

(…	since	Q2	in	Assignment	2)

2/2/17

1. Tri-Training: Leverage Unlabelled Data

Unlabelled Data Labelled Data

High Performance
Parser (A)

High Performance
Parser (B)

“Tri-Training” (Li et al,
2014)

Agree on
dependency

parseDisagree on
dependency

parse

2/2/17

2. Model Changes
Chen & Manning (2014):

2/2/17

Weiss et al. (2015):

2. Model Changes
Chen & Manning (2014):

2/2/17

Weiss et al. (2015):

2. Model Changes
Chen & Manning (2014):

(2x	hidden) RELU	!
!

2/2/17

3. Structured Perceptron Training + Beam Search

Problem: Greedy algorithms are unable to look beyond one step ahead, or recover from
incorrect decisions.

2/2/17

3. Structured Perceptron Training + Beam Search

Problem: Greedy algorithms are unable to look beyond one step ahead, or recover from
incorrect decisions.
Solution: Look forward -- search the tree
of possible transition sequences.

2/2/17

3. Structured Perceptron Training + Beam Search

- Keep track of K top partial
transition sequences up to
depth m.- Score transition using
perceptron:

Problem: Greedy algorithms are unable to look beyond one step ahead, or recover from
incorrect decisions.
Solution: Look forward -- search the tree
of possible transition sequences.

2/2/17

3. Structured Perceptron Training + Beam Search

- Keep track of K top partial
transition sequences up to
depth m.- Score transition using
perceptron: Feature vector

Perceptron
parameter vector

Possible transition
sequences

Problem: Greedy algorithms are unable to look beyond one step ahead, or recover from
incorrect decisions.
Solution: Look forward -- search the tree
of possible transition sequences.

2/2/17

Conclusions

❖ Identify specific flaws in existing models (greedy algorithms) and solve them. In this
case, with:
➢ More data
➢ Better tuning
➢ Structured perceptron and beam search

❖ Final step to SyntaxNet: Andor et al. (2016) solve the “Label Bias Problem” using
Global Normalization

2/2/17

IPython	Notebook	with	vanishing	gradient	example

• Example	of	simple	and	clean	NNet	implementation		

• Comparison	of	sigmoid	and	ReLu	units	

• A	little	bit	of	vanishing	gradient

2/2/17

2/2/17

Trick	for	exploding	gradient:	clipping	trick

• The	solution	first	introduced	by	Mikolov		is	to	clip	gradients 
to	a	maximum	value.		

• Makes	a	big	difference	in	RNNs.

2/2/17

Gradient	clipping	intuition

2/2/17

• Error	surface	of	a	single	hidden	unit	RNN,		

• High	curvature	walls	

• Solid	lines:	standard	gradient	descent	trajectories		

• Dashed	lines	gradients	rescaled	to	fixed	size

Figure	from	paper:	  
On	the	difficulty	of	training	
Recurrent	Neural	
Networks,	Pascanu	et	al.	
2013

For	vanishing	gradients:	Initialization	+	ReLus!

2/2/17

• Initialize	W(*)‘s	to 
identity	matrix	I 
and  
f(z)		=	

• à Huge	difference!	

• Initialization	idea	first	introduced	in	Parsing	with	Compositional	
Vector	Grammars,	Socher	et	al.	2013	

• New	experiments	with	recurrent	neural	nets	in	A	Simple	Way	to	
Initialize	Recurrent	Networks	of	Rectified	Linear	Units,	Le	et	al.	
2015

rect(z) =max(z, 0)

Perplexity	Results

2/2/17

KN5	=	Count-based	language	model	with	Kneser-Ney	
smoothing	&	5-grams	

Table	from	paper	Extensions	of	recurrent	neural	network	
language	model	by	Mikolov	et	al	2011

Problem:	Softmax	is	huge	and	slow

2/2/17

Trick:	Class-based	word	prediction	

p(wt|history)		 =	p(ct|history)p(wt|ct)	

	 	 	 =	p(ct|ht)p(wt|ct)	

The	more	classes, 
the	better	perplexity 
but	also	worse	speed:

One	last	implementation	trick

2/2/17

• You	only	need	to	pass	backwards	through	your	
sequence	once	and	accumulate	all	the	deltas	from	
each	Et

Sequence	modeling	for	other	tasks

2/2/17

• Classify	each	word	into:		

• NER	

• Entity	level	sentiment	in	context		

• opinionated	expressions	

• Example	application	and	slides	from	paper	Opinion	
Mining	with	Deep	Recurrent	Nets	by	Irsoy	and	Cardie	
2014

Opinion	Mining	with	Deep	Recurrent	Nets	

2/2/17

Goal:	Classify	each	word	as	

direct	subjective	expressions	(DSEs)	and	  
expressive	subjective	expressions	(ESEs).		

DSE:	Explicit	mentions	of	private	states	or	speech	events	
expressing	private	states		

ESE:	Expressions	that	indicate	sentiment,	emotion,	etc.	
without	explicitly	conveying	them.	

Example	Annotation

2/2/17

In	BIO	notation	(tags	either	begin-of-entity	(B_X)	or	
continuation-of-entity	(I_X)): 
The	committee,	[as	usual]ESE,	[has	refused	to	make	any	
statements]DSE.	

Approach:	Recurrent	Neural	Network

2/2/17

• Notation	from	paper	(so	you	get	used	to	different	ones)	

• x	represents	a	token	(word)	as	a	vector.		

• y	represents	the	output	label	(B,	I	or	O)	–	g	=	softmax	!	

• h	is	the	memory,	computed	from	the	past	memory	and	current	
word.	It	summarizes	the	sentence	up	to	that	time.

Bidirectional	RNNs

2/2/17

Problem:	For	classification	you	want	to	incorporate	
information	from	words	both	preceding	and	following	

Ideas?

Deep	Bidirectional	RNNs

2/2/17

Data

2/2/17

• MPQA	1.2	corpus	(Wiebe	et	al.,	2005)		

• consists	of	535	news	articles	(11,111	sentences)		

• manually	labeled	with	DSE	and	ESEs	at	the	phrase	level		

• Evaluation:	F1 

• Harmonic	mean	of	precision	and	recall

Evaluation

2/2/17

Recap

2/2/17

• Recurrent	Neural	Network	is	one	of	the	best	deepNLP	
model	families	

• Training	them	is	hard	because	of	vanishing	and	
exploding	gradient	problems	

• They	can	be	extended	in	many	ways	and	their	training	
improved	with	many	tricks	(more	to	come)	

• Next	week:	Most	important	and	powerful	RNN	
extensions	with	LSTMs	and	GRUs

2/2/17

Problem	with	Softmax:	  
No	Zero	Shot	Word	Predictions

• Answers	can	only	be	predicted	if	they	were	seen	during	training	
and	part	of	the	softmax	

• But	it’s	natural	to	learn	new	words	in	an	active	conversation	and	
systems	should	be	able	to	pick	them	up

Tackling	Obstacle	by	Predicting	Unseen	Words	

• Idea:	Mixture	Model	of	softmax	and	pointers:	

• Pointer	Sentinel	Mixture	Models	by 
Stephen	Merity,	Caiming	Xiong,	James	Bradbury,	Richard	
Socher	

Pointer-Sentinel	Model	-	Details

Pointer	Sentinel	for	Language	Modeling

