Natural Language Processing
with Deep Learning

CS224N/Ling284

Lecture 8:
Recurrent Neural Networks

Christopher Manning and Richard Socher

Organization

Extra project office hour today after lecture

2/2/17

Overview

* Traditional language models
* RNNs
 RNN language models

 Important training problems and tricks
. Intuition for vanishing gradient problem with toy example

. Vanishing and exploding gradient problems

RNNs for other sequence tasks

Bidirectional and deep RNNs

2/2/17

Language Models
A language model computes a probability for a sequence
of words: P(wi,...,wr)

 Useful for machine translation

* Word ordering:
p(the cat is small) > p(small the is cat)

* Word choice:
p(walking home after school) > p(walking house after

school)

2/2/17

Traditional Language Models

* Probability is usually conditioned on window of n
previous words

* An incorrect but necessary Markov assumption!

m m

P(w17°"7wm) — HP(U)% ‘ wla"'awi—l) ~ HP(’U)Z | wi—(n—1)7°°'7w’i—1>
=1 =1

* To estimate probabilities, compute for unigrams and

bigrams (conditioning on one/two previous word(s):
count(wy, ws) count(wy, wa, w3)

p(wa|wy) = p(ws|wy, we) =

count(wy) count(wy, ws)

2/2/17

Traditional Language Models

* Performance improves with keeping around higher n-
grams counts and doing smoothing and so-called
backoff (e.g. if 4-gram not found, try 3-gram, etc)

* There are A LOT of n-grams!
- Gigantic RAM requirements!

* Recent state of the art: Scalable Modified Kneser-Ney
Language Model Estimation by Heafield et al.:

“Using one machine with 140 GB RAM for 2.8 days, we
built an unpruned model on 126 billion tokens”

2/2/17

Recurrent Neural Networks!

* RNNs tie the weights at each time step
* Condition the neural network on all previous words

* RAM requirement only scales with number of words

VA 4

2/2/17

Recurrent Neural Network language model

Given list of word vectors: %1:---Ti—1, %, Tet1,. -, TT

. . hh hx
At a single time step: he = o (W< ey + W >ﬂf[t1)
UJ; = softmax (W(S)ht)
Plagr =vj | @,...,21) = G
®
@) Q
() i
[®
@ L

2/2/17

Recurrent Neural Network language model

Main idea: we use the same set of W weights at all time
steps!

Everything else is the same: & = o (W<hh)ht—1 + W(h@ﬂf[t])
UJ; = softmax (W(S)ht)
Pz =vj | @e,...,21) = G

ho € R”" is some initialization vector for the hidden layer
at time step O

s the column vector of L at index [t] at time step t

W(hh) c RDhXDh W(ha:) c RDh X d W(S> c R|V|XDh

2/2/17

Recurrent Neural Network language model
1y € RV is a probability distribution over the vocabulary

Same cross entropy loss function but predicting words
instead of classes

\4
JD0) = = i jlog i,
j=1

2/2/17

Recurrent Neural Network language model

Evaluation could just be negative of average log
probability over dataset of size (number of words) T:

T |V

1
J = i S: S:yt,j log Ut

t=1 j=1

But more common: Perplexity: 2J

Lower is better!

2/2/17

Training RNNs is hard

e Multiply the same matrix at each time step during forward prop

Vi

h
W

t+1

>

X
t-1 r Xy Xir1 |_)

(0000 (ecee| (co0oo]

vV
0000 —>—

0000 —>

e |deally inputs from many time steps ago can modify output y
e Take % for an example RNN with 2 time steps! Insightful!

2/2/17

The vanishing/exploding gradient problem

e Multiply the same matrix at each time step during backprop

y'tr-l :i\ t+1
ht—l h ht
O @
e W 4 W o ‘
® ady | 0
> @ O .
Xt-1 Xt Xts1

(0o000| (0000 (eo0e0

2/2/17

The vanishing gradient problem - Details

e Similar but simpler RNN formulation:

]’Lt = Wf(ht_l) + W(hw)l'[t]
g = WO f(hy)

e Total error is the sum of each error at time steps t

OB _ <~ 0B,
OW &= oW

t=1

e Hardcore chain rule application'

8Et Z 8Et 8yt 8ht 8hk

2/2/17

The vanishing gradient problem - Details

Similar to backprop but less efficient formulation

Useful for analysis we’ll Iook at:
8Et Z 8Et é?yt aht ahk
8yt 8ht ahk ow

e Remember: he = Wf(he_1)+ W(hx)x[t]
e More chain rule, remember:
Ohy ‘o Oh,

6hk ka1 8hj_1
e Each partial is a Jacobian: 0fh OhT
o[U
dx 0xq ox,, % N 8fm
| 01 ox,,

2/2/17

The vanishing gradient problem - Details

Analyzing the norms of the Jacobians, yields:

Oh;
ahj_l

Where we defined ‘s as upper bounds of the norms

< W ||| diag[f'(hj—]Il < Bw Bn

The gradient is a product of Jacobian matrices, each associated
with a step in the forward computation.

ohy
Ohy,

= |l < (BwBn) "

This can become very small or very large quickly [Bengio et al
1994], and the locality assumption of gradient descent breaks
down. = Vanishing or exploding gradient

2/2/17

Why is the vanishing gradient a problem?

e The error at a time step ideally can tell a previous time step from
many steps away to change during backprop

ytT_l yt yt+1

ht—l . ht 1 ht+1 /y

- W - ® W S 0O e
® > @ O
O O O

2/2/17

The vanishing gradient problem for language models

e |n the case of language modeling or question answering words
from time steps far away are not taken into consideration when
training to predict the next word

e Example:

Jane walked into the room. John walked in too. It was late in the
day. Jane said hi to

2/2/17

Structured Training for Neural
Network Transition-Based
B,aLES i’“@em’, Michael Collins, Slav Petrov

Presented by: Shayne Longpre

What is SyntaxNet?

% 2016/5: Google announces the “World’s Most Accurate Parser Goes
Open Source”

“ SyntaxNet (2016): New, fast, performant Tensorflow framework for
syntactic parsing.

“* Now supports 40 languages -- Parse McParseface’s 40 ‘cousins’

2/2/17

What is SyntaxNet?

% 2016/5: Google announces the “World’s Most Accurate Parser Goes

Open Source”

% SyntaxNet (2016): fast, performanWwork for
syntactic pa

Qh&%»%{'%%lﬁg 40 Iangua%\éeéf%e(%@rseface s 4 . (2016

201
(00.-00]
Xrim) + Unlabelled Data + Global Normalization
Ef_f_'_]---if_ﬁf_ R &) + Tune Model —
Cords POStags arc lubels + Structured
Stack Buffer Perceptron & Beam SyntaxNet

ROOT has_VBZ good_JJ control. NN ... SeaI’Ch

2/2/17

What is SyntaxNet?

% 2016/5: Google announces the “World’s Most Accurate Parser Goes

Open Source”
“ SyntaxNet (2016): ,
syntactic pafsing.

Qh&%»%{'%%lﬁg 40 langualiiss ALAle(fi®drsefa

201
(00.-00]
Xz x) + Unlabelled Data
(0 @s-wes .)| + TuneModel
vods POStags arclubels + Structured
Stack Buffer Perceptron & Beam

msfr%mework for

he's 4(3@@895%%&. (2016)

+ Global Normalization

SyntaxNet

ROOT has_VBZ good_JJ control. NN ...

Search

2/2/17

3 NeW Contributions (... since Q2 in Assignment 2)

1. Leverage Unlabelled Data -- “Tri-Training”
2. Tuned Neural Network Model

3. Final Layer: Structured Perceptron w/ Beam Search

2/2/17

1. Tri-Training: Leverage Unlabelled Data

High Performance
Parser (A)
Agree on

’C) dependency
Dig4gree on
dependency

High Performance parse
Parser (B)

Unlabelled Data “Tri-Training” (Li et al, Labelled Data
2014)

2/2/17

2. Model Changes

Chen & Manning (2014):

0D
_,[[]
[f_:‘-“i'f_:: //// oo R
wovrds POS tags arc labels
Stack Buffer

ROOT has_VBZ good_JJ control_ NN

2/2/17

2. Model Changes

Chen & Manning (2014): Weiss et al. (2015):
Perceptron Layer ‘ y:agénl\?:;);v é(z,cj)

C000)

Softmax Layer 1 P(y) cexp{8)hy +b,}
(00 -00]
e R S (OOOO]

{ [7 B N)] Hidden Layers 1 hy = max{0, Wyh; + by}

55 555 606 996 55%) e

w&ds POS tags arc labels [OOOQOOOO]

StaCk BUﬁer Embeddin g Layer 1 hy = [X E,] Vg € {word, tag, label}

ROOT has_VBZ good.JJ | | control NN ... \ \ _____ Features Extracted
/ as‘us{) 'sia’ck """" Buffer \ , $i, bi
The nu\s had little effect |. le1(sq), lea(sq)
‘DT NN | VBD 7] NN | rea(si),rea(si)
ROOT - ralrals))
ROOT ley(ley (si))

2. Model Changes

Chen & Manning (2014): Weiss

et al. (201 5)'

A

argmax E v(y

yeGEN(2) j=1

o(z, ¢j)

OO
Eayer—>>

Softmax

A

50)

P(y) o exp{f3, hy + by}

(@)

00|

Hidden Layers

h2 = max{O,W2h1 + b2} H

[(0O0®

OO00) RELU !

\t

h; = max{0, Wihg + b;}

[OO00

OO0O0]

hy = [X, Eg] Vg € {word, tag, label}

POS tags arc labels
Stack Buffer Embedding Layer
[nsubi_ 'st'a‘c;;

Features Extracted

83, b

Thc nu& S had

D1 VBD

le1(sq), lea(ss)
rei(sq), rea(si)

ROOT
RO(

rey(rei(s;))
ley(ley(sy))

3. Structured Perceptron Training + Beam Search

Problem: Greedy algorithms are unable to look beyond one step ahead, or recover from
incorrect decisions.

2/2/17

3. Structured Perceptron Training + Beam Search

Problem: Greedy algorithms are unable to look beyond one step ahead, or recover from
incorrect decisions.

Solution: Look forward -- search the tree ~ nv!?
of possible transition sequences.

nivel 1

nivel 2

nivel 3

nivel 4

nivel 5

Figura 1 — Arvore de busca utilizando o beam search

2/2/17

3. Structured Perceptron Training + Beam Search

Problem: Greedy algorithms are unable to look beyond one step ahead, or recover from
incorrect decisions.

Solution: Look forward -- search the tree nivel 0 W,
of possible transition sequences.

nivel 1

- Keep track of K top partial XX XX,

transition sequences up to wel2 { Jea (0 el i)

agn . K St —— a
- g%BPé ’fPansmon using nivel 3 Y i {)X (L\
BCA ' _/ BCD BCE _~/ EAB ~_/ EAC '\ _, EAD
perceptron: X X
n nivel 4 BCDA ‘/\;’ BCDE EABC '/\:) EABD
argmax Z v(y;) - (%, y1 ... Yj-1)-
yeGEN() J=1 nivel 5 O BCDEA EABDC

Figura 1 — Arvore de busca utilizando o beam search

2/2/17

3. Structured Perceptron Training + Beam Search

Problem: Greedy algorithms are unable to look beyond one step ahead, or recover from
incorrect decisions.

Solution: Look forward -- search the tree nivel 0 W,
of possible transition sequences.

nivel 1 { E
- Keep track of K top partial P =X >§><;
transition sequences up to nel2 {) e / _esl) el el
o . S e VAl
- g%BPé fpanSItlon using nivel 3 Y ?—\\X (L\
BCA '\ _/ Eas '._/ EAC '\ _/EAD
perceptron: Feature vector)X)X
L ' : \ R4 BCDA ‘/\;’ BCDE EABC '/\:) EABD
argmax Z v(y;) - (%, y1 ... Yj-1)-
yeGEN() j=1 ¥ nivel 5 O BCDEA EABDC
S
Possible transition Figura 1 — Arvore de busca utilizando o beam search

Perceptron
parameter vector

2/2/17

sequences

Conclusions
(Method ~ |UAS |LAS(PTBWSISD3.3 |

Chen & Manning 2014 92.0 89.7
Weiss et al. 2015 93.99 92.05
Andor et al. 2016 94.61 92.79

% Identify specific flaws in existing models (greedy algorithms) and solve them. In this
case, with:
> More data
> Better tuning
> Structured perceptron and beam search

% Final step to SyntaxNet: Andor et al. (2016) solve the “Label Bias Problem” using
Global Normalization

2/2/17

IPython Notebook with vanishing gradient example

e Example of simple and clean NNet implementation
e Comparison of sigmoid and RelLu units

o A little bit of vanishing gradient

dlU - ((1{1{J)!d:[’l’) - f’(:\“]. i)‘;ql>l;ﬂ ::(ﬂl+4)(“}HJ7" . A“.N.

2/2/17

In [21]: plt.plot(np.array(relu_array[:6000]),color="blue’)
plt.plot(np.array(sigm _array[:6000]),color="green')
plt.title('Sum of magnitudes of gradients -- hidden layer neurons')

Out[21]: <matplotlib.text.Text at 0x10a331310>

10 Sum of magnitudes of gradients -- hidden layer neurons

0 1000 2000 3000 4000 5000 6000

2/2/17

Trick for exploding gradient: clipping trick

e The solution first introduced by Mikolov is to clip gradients
to a maximum value.

Algorithm 1 Pseudo-code for norm clipping the gra-
dients whenever they explode

if ||g|| = threshold then
A fthreshold
B g 8

end if

e Makes a big difference in RNNs.

2/2/17

Gradient clipping intuition

Figure from paper:

On the difficulty of training
| 0.35 Recurrent Neural

0.30 Networks, Pascanu et al.

e 0.25 2013

P 0.20
0.15 6
0.10
0.05

* Error surface of a single hidden unit RNN,

e High curvature walls

* Solid lines: standard gradient descent trajectories

 Dashed lines gradients rescaled to fixed size
2/2/17

For vanishing gradients: Initialization + ReLus!

Foos -Ly-pom perrufed MNIST

100

e |nitialize W)‘s to
identity matrix |
and

f(z) = rect(2)=max(z0)

e > Huge difference!

* Initialization idea first introduced in Parsing with Compositional
Vector Grammars, Socher et al. 2013

 New experiments with recurrent neural nets in A Simple Way to
Initialize Recurrent Networks of Rectified Linear Units, Le et al.
2015

2/2/17

Perplexity Results

KN5 = Count-based language model with Kneser-Ney
smoothing & 5-grams

Table 2. Comparison of different neural network architectures on
Penn Corpus (1M words) and Switchboard (4M words).

Penn Corpus Switchboard
Model NN | NN+KN || NN | NN+KN
KNS5 (baseline) - 141 - 92.9
feedforward NN 141 118 85.1 77.5
RNN trained by BP 137 113 81.3 75.4
RNN trained by BPTT || 123 106 77.5 72.5

Table from paper Extensions of recurrent neural network
language model by Mikolov et al 2011

2/2/17

Problem: Softmax is huge and slow

Trick: Class-based word prediction

p(w, | history) = p(c,| history)p(w,|c,)

= p(Ct ht) p(Wt | Ct)
Table 3. Perplexities on Penn corpus with factorization of the output
layer by the class model. All models have the same basic configura-
tion (200 hidden units and BPTT=5). The Full model is a baseline
and does not use classes, but the whole 10K vocabulary.

The more C|asseS, | Classes || RNN | RNN+KN5 | Min/epoch | Sec/test |

30 134 112 12.8 8.8

: 50 136 114 9.8 6.7

the better perpleXIty 100 136 114 9.1 5.6
200 136 113 9.5 6.0

but also worse speed: 200 134 - 09 o1
1000 131 111 16.1 15.7

2000 128 109 25.3 28.7

4000 127 108 44 .4 57.8

6000 127 109 70 96.5

8000 124 107 107 148

Full 123 106 154 212

One last implementation trick

* You only need to pass backwards through your
sequence once and accumulate all the deltas from
each E,

2/2/17

Sequence modeling for other tasks

* C(lassify each word into:
* NER
* Entity level sentiment in context

* opinionated expressions

* Example application and slides from paper Opinion
Mining with Deep Recurrent Nets by Irsoy and Cardie
2014

2/2/17

Opinion Mining with Deep Recurrent Nets

Goal: Classify each word as

direct subjective expressions (DSEs) and
expressive subjective expressions (ESEs).

DSE: Explicit mentions of private states or speech events
expressing private states

ESE: Expressions that indicate sentiment, emotion, etc.
without explicitly conveying them.

2/2/17

Example Annotation

In BIO notation (tags either begin-of-entity (B_X) or
continuation-of-entity (I_X)):
The committee, [as usual];, [has refused to make any

statementsl..-.

The committee . as usual has
O O O B_ESE I_ESE O B_DSE
refused to make any statements

I_DSE |_DSE |_DSE |_DSE |_DSE O

2/2/17

Approach: Recurrent Neural Network

* Notation from paper (so you get used to different ones)

yV e ®) ®
A A A A

h h =f(Wx, +Vh_ +b)
A A A A yt — g(Uh, +C)

X o [) [

* xrepresents a token (word) as a vector.
* yrepresents the output label (B, | or O) — g = softmax !

* histhe memory, computed from the past memory and current
word. It summarizes the sentence up to that time.

2/2/17

Bidirectional RNNs

Problem: For classification you want to incorporate
information from words both preceding and following

Y e o o o
f | [[hi = I (Wx, +Vhioi + I;)
h Om homo ‘/:lt=f(WXt+i7Zt+l+Z)

;V. ;?_Hﬂ;r,: o
\ \ \ \ y, = 8(Ulhi;h]+c)

X e ° ° °

h=[h;h] now represents (summarizes) the past and future

around a single token.
2/2/17

Deep Bidirectional RNNs

_.<,) iy DD)
f(W h +V hia+b)

<—(l) (i-1) — () «(i) ()
f(W h +V hu+b)

—(L) «(L)

= g(U[ht ;ht]+C)

R

X]]]]

Each memory layer passes an intermediate sequential
representation to the next.

2/2/17

Data

MPQA 1.2 corpus (Wiebe et al., 2005)
* consists of 535 news articles (11,111 sentences)
* manually labeled with DSE and ESEs at the phrase level

* Evaluation: F1

. tp
precision =
tp+ fp
t
recall = P
tp+ fn
l—9. precision - recall

precision + recall

* Harmonic mean of precision and recall

2/2/17

Evaluation

68
66
64 -
62 -
i
| | | | 58 - | | |
1 2 3 4 5 1 2 3 4 S
Layers # Layers

W 24k
m 200k

2/2/17

Recap

* Recurrent Neural Network is one of the best deepNLP
model families

* Training them is hard because of vanishing and
exploding gradient problems

* They can be extended in many ways and their training
improved with many tricks (more to come)

* Next week: Most important and powerful RNN
extensions with LSTMs and GRUs

2/2/17

2/2/17

Problem with Softmax:
No Zero Shot Word Predictions

e Answers can only be predicted if they were seen during training
and part of the softmax

e Butit’s natural to learn new words in an active conversation and
systems should be able to pick them up

Tackling Obstacle by Predicting Unseen Words

e |dea: Mixture Model of softmax and pointers:

el .. el
Fod Char Janet Ydlen . rized ruates . Ms. mn?
]
E -
Sanhinal
d .
forel Yelan) g
A - anrdvark Bearaanka . Rogenthad Yedlan welva
:E: § ‘] 4 [.] 1] ‘__
&
Qoubr(ivd'en]

AYelen) = g pocn(Ydlen) + {1 - g) oo Ydlen)

e Pointer Sentinel Mixture Models by
Stephen Merity, Caiming Xiong, James Bradbury, Richard

Socher

Pointer-Sentinel Model - Details

Output Distribution
plyun|wr, ..., wx-1)

D

ST , T
R s R R R RNN Distribution

Procab{YN|wy

..... wy-1)

P(Yi|Ti) = g Pyocab(¥i|zi) + (1 — g) Ppue(ysls)

zi=q" hi, Ppur(w) = Z Qs

a = softmax(z), i€l(w,z)

Pointer Sentinel for Language Modeling

Model | Parameters Validation Test
Mikolov & Zweig (2012) - KN-5 2M* - 141.2
Mikolov & Zweig (2012) - KNS5 + cache 2M? - 125.7
Mikolov & Zweig (2012) - RNN 6M? - 124.7
Mikolov & Zweig (2012) - RNN-LDA TM? - 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache oM+ - 92.0
Pascanu et al. (2013a) - Deep RNN 6M - 107.5
Cheng et al. (2014) - Sum-Prod Net sMt — 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 86.2 82.7
Zaremba et al. (2014) - LSTM (large) 66M 82.2 8.4
Gal (2015) - Variational LSTM (medium, untied) 20M 8§1.94+0.2 79.74+0.1
Gal (2015) - Vanational LSTM (medium, untied, MC) 20M - 78.6 4+ 0.1
Gal (2015) - Variational LSTM (large, untied) 66M T79+03 752402
Gal (2015) - Variational LSTM (large, untied, MC) 66M - 73.44+0.0
Kim et al. (2016) - CharCNN 19M - 78.9
Zilly et al. (2016) - Variational RHN 32M 72.8 71.3
Zoneout + Variational LSTM (medium) 20M 84.4 80.6
Pointer Sentinel-LSTM (medium) 21M 724 70.9

