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Overview	
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•  Recap	of	most	important	concepts	&	equa<ons	

•  Machine	transla<on	

•  Fancy	RNN	Models	tackling	MT:	

•  Gated	Recurrent	Units	by	Cho	et	al.	(2014)	

•  Long-Short-Term-Memories		
by	Hochreiter	and	Schmidhuber	(1997)	



Recap	of	most	important	concepts	

3	

Word2Vec	

	

Glove	

	

Nnet	&	Max-margin	

		



Recap	of	most	important	concepts	
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Mul<layer	Nnet	

&	

Backprop	

The second derivative in eq. 28 for output units is simply
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We adopt standard notation and introduce the error � related to an output unit:
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So far, we only computed errors for output units, now we will derive �’s for normal hidden units and
show how these errors are backpropagated to compute weight derivatives of lower levels. We will start with
second to top layer weights from which a generalization to arbitrarily deep layers will become obvious.
Similar to eq. 28, we start with the error derivative:
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Now,
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where we used in the first line that the top layer is linear. This is a very detailed account of essentially
just the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamard
product �):

�
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where the sigmoid derivative from eq. 14 gives f 0(z(l)) = (1� a

(l))a(l). Using that definition, we get the
hidden layer backprop derivatives:
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Which in one simplified vector notation becomes:
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In summary, the backprop procedure consists of four steps:

1. Apply an input x

n

and forward propagate it through the network to get the hidden and output
activations using eq. 18.

2. Evaluate �

(n
l

) for output units using eq. 42.

3. Backpropagate the �’s to obtain a �

(l) for each hidden layer in the network using eq. 59.

4. Evaluate the required derivatives with eq. 62 and update all the weights using an optimization
procedure such as conjugate gradient or L-BFGS. CG seems to be faster and work better when
using mini-batches of training data to estimate the derivatives.

If you have any further questions or found errors, please send an email to richard@socher.org

5 Recursive Neural Networks

Same as backprop in previous section but splitting error derivatives and noting that the derivatives of the
same W at each node can all be added up. Lastly, the delta’s from the parent node and possible delta’s
from a softmax classifier at each node are just added.

References

[Ben07] Yoshua Bengio. Learning deep architectures for ai. Technical report, Dept. IRO, Universite de
Montreal, 2007.
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Recap	of	most	important	concepts	
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Recurrent	Neural	Networks	

	

	

	

Cross	Entropy	Error	

	

Mini-batched	SGD	

	

	

	

	

	



Machine	Transla8on	
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•  Methods	are	sta<s<cal		

•  Use	parallel	corpora	

•  European	Parliament		

•  First	parallel	corpus:	
•  Rose[a	Stone	à	

•  Tradi<onal	systems	
are	very	complex	

Picture	from	Wikipedia	



Current	sta8s8cal	machine	transla8on	systems	

•  Source	language	f,	e.g.	French	
•  Target	language	e,	e.g.	English	
•  Probabilis<c	formula<on	(using	Bayes	rule)	

•  Transla<on	model	p(f|e)	trained	on	parallel	corpus	
•  Language	model	p(e)	trained	on	English	only	corpus	(lots,	free!)	

7	

Transla<on	Model	
p(f|e)	French	à	 à	Pieces	of	English	à	 Language	Model	

p(e)	

Decoder	
argmax	p(f|e)p(e)	 à	Proper	English	



Step	1:	Alignment		
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Goal:	know	which	word	or	phrases	in	source	language	
would	translate	to	what	words	or	phrases	in	target	
language?	à	Hard	already!	

	

	

	

	
	

Alignment	examples	from	Chris	Manning/CS224n	

9/24/14 

4 

Statistical MT 

Pioneered at IBM in the early 1990s 
 
Let’s make a probabilistic model of translation 
P(e | f) 
 
Suppose f is de rien 
P(you’re welcome | de rien)  = 0.45 
P(nothing | de rien)    = 0.13 
P(piddling | de rien)   = 0.01 
P(underpants | de rien)   = 0.000000001 

Hieroglyphs 

Statistical Solution 

•  Parallel Texts 
– Rosetta Stone 

Demotic 

Greek 

Statistical Solution 

–  Instruction Manuals 
–  Hong Kong/Macao 

Legislation 
–  Canadian Parliament 

Hansards 
–  United Nations Reports 
–  Official Journal 

of the European 
Communities 

–  Translated news 

•  Parallel Texts Hmm, every time one sees  
“banco”, translation is  
�bank” or “bench” …   
If it’s “banco de…”, it 
always becomes “bank”,  
never “bench”… 

A Division of Labor 

Spanish Broken 
English 

English 

Spanish/English 
Bilingual Text 

English 
Text 

Statistical Analysis Statistical Analysis 

Que hambre tengo yo I am so hungry 

Translation 
Model P(f|e) 

Language 
Model P(e) 

Decoding algorithm 
argmax P(f|e) * P(e) 
     e 

What hunger have I, 
Hungry I am so, 
I am so hungry, 
Have I that hunger … 

Fidelity Fluency 

Alignments 
We can factor the translation model P(f | e ) 
by identifying alignments (correspondences) 
between words in f and words in e 

Japan 
shaken 

by 
two 

new 
quakes 

Le 
Japon 
secoué 
par 
deux 
nouveaux 
séismes 

Japan 
shaken 

by 
two 

new 
quakes 

Le
 

Ja
po

n 
se

co
ué

 
pa

r 
de

ux
 

no
uv

ea
ux

 
sé

is
m

es
 

�spurious� 
word 

Alignments: harder 

And 
the 

program 
has 

been 
implemented 

Le 
programme 
a 
été 
mis 
en 
application 

�zero fertility� word 
not translated 

And 
the 

program 
has 

been 
implemented 

Le
 

pr
og

ra
m

m
e 

a ét
é 

m
is

 
en

 
ap

pl
ic

at
io

n 

one-to-many 
alignment 
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9/24/14 

5 

Alignments: harder 

The 
balance 

was 
the 

territory 
of 

the 
aboriginal 

people 

Le 
reste 
 
appartenait 
 
aux 
 
autochtones 

many-to-one 
alignments 

The 
balance 

was 
the 

territory 

of 
the 

aboriginal 
people 

 L
e 

re
st

e 

ap
pa

rte
na

it 
au

x 

au
to

ch
to

ne
s 

Alignments: hardest 

The 
poor 
don’t 
have 

any 
money 

Les 
pauvres 
sont 
démunis 

many-to-many 
alignment 

The 
poor 

don�t 
have 

any 

money 

Le
s 

pa
uv

re
s 

so
nt

 
dé

m
un

is
 

phrase 
alignment 

Alignment as a vector 

Mary 
did 
not 

slap 
 
 

the 
green 
witch 

1 
2 
3 
4 
 
 

5 
6 
7 

Maria 
no 
daba 
una 
botefada 
a 
la 
bruja 
verde 

1 
2 
3 
4 
5 
6 
7 
8 
9 

i j 

1 
3 
4 
4 
4 
0 
5 
7 
6 

aj=i 
•  used in all IBM models 
•  a is vector of length J 
•  maps indexes j to indexes i 
•  each aj 
 {0, 1 … I} 
•  aj = 0 	 fj is �spurious� 
•  no one-to-many alignments 
•  no many-to-many alignments 
•  but provides foundation for 

phrase-based alignment 

IBM Model 1 generative story 

And 
the 

program 
has 

been 
implemented 

aj 

Le
 

pr
og

ra
m

m
e 

a ét
é 

m
is

 
en

 
ap

pl
ic

at
io

n 

2  3  4  5  6  6  6  

Choose length J for French sentence 

For each j in 1 to J: 

–  Choose aj uniformly from 0, 1, … I 

–  Choose fj by translating eaj 

Given English sentence e1, e2, … eI 

We want to learn 
how to do this 

Want: P(f|e) 

IBM Model 1 parameters 

And 
the 

program 
has 

been 
implemented 

Le
 

pr
og

ra
m

m
e 

a ét
é 

m
is

 
en

 
ap

pl
ic

at
io

n 

2 3 4 5 6 6 6  aj 

Applying Model 1* 

As translation model 

As alignment model 

P(f, a | e) can be used as a translation model or an alignment model 

* Actually, any P(f, a | e), e.g., any IBM model 

Really	hard	:/		
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•  We	could	spend	an	en<re	lecture	on	alignment	models	

•  Not	only	single	words	but	could	use	phrases,	syntax	

•  Then	consider	reordering	of	translated	phrases	

	 	 	 	 	Example	from	Philipp	Koehn	

Translation Process

• Task: translate this sentence from German into English

er geht ja nicht nach hause

er geht ja nicht nach hause

he does not go home

• Pick phrase in input, translate

Chapter 6: Decoding 6



A@er	many	steps	
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Each	phrase	in	source	language	has	many	possible	
transla<ons	resul<ng	in	large	search	space:	

Translation Options

he

er geht ja nicht nach hause

it
, it

, he

is
are

goes
go

yes
is

, of course

not
do not

does not
is not

after
to

according to
in

house
home

chamber
at home

not
is not

does not
do not

home
under house
return home

do not

it is
he will be

it goes
he goes

is
are

is after all
does

to
following
not after

not to

,

not
is not

are not
is not a

• Many translation options to choose from

– in Europarl phrase table: 2727 matching phrase pairs for this sentence
– by pruning to the top 20 per phrase, 202 translation options remain

Chapter 6: Decoding 8



Decode:	Search	for	best	of	many	hypotheses	
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Hard	search	problem	that	also	includes	language	model	
Decoding: Find Best Path

er geht ja nicht nach hause

are

it

he
goes

does not

yes

go

to

home

home

backtrack from highest scoring complete hypothesis

Chapter 6: Decoding 15



Tradi8onal	MT	
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•  Skipped	hundreds	of	important	details	

•  A	lot	of	human	feature	engineering	

•  Very	complex	systems	

•  Many	different,	independent	machine	learning	
problems	



Deep	learning	to	the	rescue!	…	?	
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Maybe,	we	could	translate	directly	with	an	RNN?	

	 	 	 	Decoder:	

Encoder	

x1	 x2	 x3	

h1	 h2	 h3	
W	 W	

y1	 y2	

Echt	 	 			dicke 	 									Kiste	
		

Awesome	 							sauce	

This	needs	to		
capture	the		
en<re	phrase!	



MT	with	RNNs	–	Simplest	Model	
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Encoder:	

Decoder:			

	

Minimize	cross	entropy	error	for	all	target	words	
condi<oned	on	source	words	

	

It’s	not	quite	that	simple	;)		



RNN	Transla8on	Model	Extensions	
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1.	Train	different	RNN	weights	for	encoding	and	decoding	

	

x1	 x2	 x3	

h1	 h2	 h3	
W	 W	

y1	 y2	

Echt	 	 			dicke 	 									Kiste	
		

Awesome	 							sauce	
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Nota<on:	Each	input	of	ϕ	has	its	own	linear	
transforma<on	matrix.	Simple:	

2.  Compute	every	hidden	state	in		
decoder	from	

•  Previous	hidden	state	(standard)	

•  Last	hidden	vector	of	encoder	c=hT	

•  Previous	predicted	output	word	yt-1	

	

2 RNN Encoder–Decoder

2.1 Preliminary: Recurrent Neural Networks
A recurrent neural network (RNN) is a neural net-
work that consists of a hidden state h and an
optional output y which operates on a variable-
length sequence x = (x1, . . . , xT ). At each time
step t, the hidden state hhti of the RNN is updated
by

hhti = f

�

hht�1i, xt
�

, (1)

where f is a non-linear activation func-
tion. f may be as simple as an element-
wise logistic sigmoid function and as com-
plex as a long short-term memory (LSTM)
unit (Hochreiter and Schmidhuber, 1997).

An RNN can learn a probability distribution
over a sequence by being trained to predict the
next symbol in a sequence. In that case, the output
at each timestep t is the conditional distribution
p(xt | xt�1, . . . , x1). For example, a multinomial
distribution (1-of-K coding) can be output using a
softmax activation function

p(xt,j = 1 | xt�1, . . . , x1) =
exp

�

wjhhti
�

PK
j0=1 exp

�

wj0hhti
�

,

(2)

for all possible symbols j = 1, . . . ,K, where wj

are the rows of a weight matrix W. By combining
these probabilities, we can compute the probabil-
ity of the sequence x using

p(x) =
T
Y

t=1

p(xt | xt�1, . . . , x1). (3)

From this learned distribution, it is straightfor-
ward to sample a new sequence by iteratively sam-
pling a symbol at each time step.

2.2 RNN Encoder–Decoder
In this paper, we propose a novel neural network
architecture that learns to encode a variable-length
sequence into a fixed-length vector representation
and to decode a given fixed-length vector rep-
resentation back into a variable-length sequence.
From a probabilistic perspective, this new model
is a general method to learn the conditional dis-
tribution over a variable-length sequence condi-
tioned on yet another variable-length sequence,
e.g. p(y1, . . . , yT 0 | x1, . . . , xT ), where one

�� �� ��

��� �� ��

�

�	�
�	�


��
�	�
Figure 1: An illustration of the proposed RNN
Encoder–Decoder.

should note that the input and output sequence
lengths T and T

0 may differ.
The encoder is an RNN that reads each symbol

of an input sequence x sequentially. As it reads
each symbol, the hidden state of the RNN changes
according to Eq. (1). After reading the end of
the sequence (marked by an end-of-sequence sym-
bol), the hidden state of the RNN is a summary c
of the whole input sequence.

The decoder of the proposed model is another
RNN which is trained to generate the output se-
quence by predicting the next symbol yt given the
hidden state hhti. However, unlike the RNN de-
scribed in Sec. 2.1, both yt and hhti are also con-
ditioned on yt�1 and on the summary c of the input
sequence. Hence, the hidden state of the decoder
at time t is computed by,

hhti = f

�

hht�1i, yt�1, c
�

,

and similarly, the conditional distribution of the
next symbol is

P (yt|yt�1, yt�2, . . . , y1, c) = g

�

hhti, yt�1, c
�

.

for given activation functions f and g (the latter
must produce valid probabilities, e.g. with a soft-
max).

See Fig. 1 for a graphical depiction of the pro-
posed model architecture.

The two components of the proposed RNN
Encoder–Decoder are jointly trained to maximize
the conditional log-likelihood

max

✓

1

N

N
X

n=1

log p✓(yn | xn), (4)

Cho	et	al.	2014	
	



Different	picture,	same	idea	
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3.  Train	stacked/deep	RNNs		
with	mul<ple	layers	

4.  Poten<ally	train		
bidirec<onal	encoder	

5.  Train	input	sequence	in	reverse	order	for	simple	
op<miza<on	problem:	Instead	of	A	B	C	à	X	Y,		
train	with	C	B	A	à	X	Y	

	

Going Deep 
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6.	Main	Improvement:	BePer	Units	
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•  More	complex	hidden	unit	computa<on	in	recurrence!	

•  Gated	Recurrent	Units	(GRU)	
introduced	by	Cho	et	al.	2014	(see	reading	list)	

•  Main	ideas:		

•  keep	around	memories	to	capture	long	distance	
dependencies	

•  allow	error	messages	to	flow	at	different	strengths	
depending	on	the	inputs	



GRUs	
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•  Standard	RNN	computes	hidden	layer	at	next	<me	step	
directly:	

•  GRU	first	computes	an	update	gate	(another	layer)	
based	on	current	input	word	vector	and	hidden	state	

•  Compute	reset	gate	similarly	but	with	different	weights	



GRUs	
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•  Update	gate		

•  Reset	gate	

•  New	memory	content:	
If	reset	gate	unit	is	~0,	then	this	ignores	previous	
memory	and	only	stores	the	new	word	informa<on		

•  Final	memory	at	<me	step	combines	current	and	
previous	<me	steps:			



APempt	at	a	clean	illustra8on	
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zt-1	
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ht-1	 ht	
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Reset	gate	

Update	gate	
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GRU	intui8on	
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•  If	reset	is	close	to	0,		
ignore	previous	hidden	state	
à	Allows	model	to	drop		
informa<on	that	is	irrelevant	
in	the	future	

•  Update	gate	z	controls	how	much	of	past	state	should	
ma[er	now.	

•  If	z	close	to	1,	then	we	can	copy	informa<on	in	that	unit	
through	many	<me	steps!	Less	vanishing	gradient!	

•  Units	with	short-term	dependencies	ooen	have	reset	
gates	very	ac<ve	



GRU	intui8on	
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•  Units	with	long	term		
dependencies	have	ac<ve	
update	gates	z	

•  Illustra<on:		

•  Deriva<ve	of																	?	à	rest	is	same	chain	rule,	but	
implement	with	modulariza8on	or	automa<c	
differen<a<on	

where ✓ is the set of the model parameters and
each (xn,yn) is an (input sequence, output se-
quence) pair from the training set. In our case,
as the output of the decoder, starting from the in-
put, is differentiable, we can use a gradient-based
algorithm to estimate the model parameters.

Once the RNN Encoder–Decoder is trained, the
model can be used in two ways. One way is to use
the model to generate a target sequence given an
input sequence. On the other hand, the model can
be used to score a given pair of input and output
sequences, where the score is simply a probability
p✓(y | x) from Eqs. (3) and (4).

2.3 Hidden Unit that Adaptively Remembers
and Forgets

In addition to a novel model architecture, we also
propose a new type of hidden unit (f in Eq. (1))
that has been motivated by the LSTM unit but is
much simpler to compute and implement.1 Fig. 2
shows the graphical depiction of the proposed hid-
den unit.

Let us describe how the activation of the j-th
hidden unit is computed. First, the reset gate rj is
computed by

rj = �

⇣

[Wrx]j +
⇥

Urhht�1i
⇤

j

⌘

, (5)

where � is the logistic sigmoid function, and [.]j
denotes the j-th element of a vector. x and ht�1

are the input and the previous hidden state, respec-
tively. Wr and Ur are weight matrices which are
learned.

Similarly, the update gate zj is computed by

zj = �

⇣

[Wzx]j +
⇥

Uzhht�1i
⇤

j

⌘

. (6)

The actual activation of the proposed unit hj is
then computed by

h

hti
j = zjh

ht�1i
j + (1� zj)

˜

h

hti
j , (7)

where

˜

h

hti
j = �

⇣

[Wx]j +
⇥

U
�

r� hht�1i
�⇤

j

⌘

. (8)

In this formulation, when the reset gate is close
to 0, the hidden state is forced to ignore the pre-
vious hidden state and reset with the current input

1 The LSTM unit, which has shown impressive results in
several applications such as speech recognition, has a mem-
ory cell and four gating units that adaptively control the in-
formation flow inside the unit, compared to only two gating
units in the proposed hidden unit. For details on LSTM net-
works, see, e.g., (Graves, 2012).

�

�� �� �

Figure 2: An illustration of the proposed hidden
activation function. The update gate z selects
whether the hidden state is to be updated with
a new hidden state ˜

h. The reset gate r decides
whether the previous hidden state is ignored. See
Eqs. (5)–(8) for the detailed equations of r, z, h
and ˜

h.

only. This effectively allows the hidden state to
drop any information that is found to be irrelevant
later in the future, thus, allowing a more compact
representation.

On the other hand, the update gate controls how
much information from the previous hidden state
will carry over to the current hidden state. This
acts similarly to the memory cell in the LSTM
network and helps the RNN to remember long-
term information. Furthermore, this may be con-
sidered an adaptive variant of a leaky-integration
unit (Bengio et al., 2013).

As each hidden unit has separate reset and up-
date gates, each hidden unit will learn to capture
dependencies over different time scales. Those
units that learn to capture short-term dependencies
will tend to have reset gates that are frequently ac-
tive, but those that capture longer-term dependen-
cies will have update gates that are mostly active.

In our preliminary experiments, we found that
it is crucial to use this new unit with gating units.
We were not able to get meaningful result with an
oft-used tanh unit without any gating.

3 Statistical Machine Translation

In a commonly used statistical machine translation
system (SMT), the goal of the system (decoder,
specifically) is to find a translation f given a source
sentence e, which maximizes

p(f | e) / p(e | f)p(f),

where the first term at the right hand side is called
translation model and the latter language model
(see, e.g., (Koehn, 2005)). In practice, however,
most SMT systems model log p(f | e) as a log-
linear model with additional features and corre-



Long-short-term-memories	(LSTMs)	
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•  We	can	make	the	units	even	more	complex	

•  Allow	each	<me	step	to	modify		

•  Input	gate	(current	cell	ma[ers)	

•  Forget	(gate	0,	forget	past)	

•  Output	(how	much	cell	is	exposed)	

•  New	memory	cell	

•  Final	memory	cell:	

•  Final	hidden	state:		



Some	visualiza8ons	
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By	Chris	Ola:	h[p://colah.github.io/posts/2015-08-Understanding-LSTMs/	

	



Most	illustra8ons	a	bit	overwhelming	;)	
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h[p://people.idsia.ch/~juergen/lstm/sld017.htm	

h[p://deeplearning.net/tutorial/lstm.html	

Intui<on:	memory	cells	can	keep	informa<on	intact,	unless	inputs	makes	them	
forget	it	or	overwrite	it	with	new	input.	
Cell	can	decide	to	output	this	informa<on	or	just	store	it	

Long	Short-Term	Memory	by	Hochreiter	and	Schmidhuber	(1997)	
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LSTMs	are	currently	very	hip!	
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•  En	vogue	default	model	for	most	sequence	labeling	
tasks	

•  Very	powerful,	especially	when	stacked	and	made	
even	deeper	(each	hidden	layer	is	already	computed	
by	a	deep	internal	network)	

•  Most	useful	if	you	have	lots	and	lots	of	data	

	



Deep	LSTMs	compared	to	tradi8onal	systems	2015	
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Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis
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I gave her a card in the garden

In the garden , I gave her a card
She was given a card by me in the garden

She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the

6

Sequence	to	Sequence	Learning	by	Sutskever	et	al.	2014		



Deep	LSTMs	(with	a	lot	more	tweaks)	
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WMT	2016	compe<<on	results	from	last	year	
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Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis
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In the garden , I gave her a card
She was given a card by me in the garden

She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the

6

Sequence	to	Sequence	Learning	by	Sutskever	et	al.	2014		

PCA	of	vectors	from	last	<me	step	hidden	layer	



Further	Improvements:	More	Gates!	
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Gated	Feedback	Recurrent	Neural	Networks,	Chung	et	al.	2015	
Gated Feedback Recurrent Neural Networks

(a) Conventional stacked RNN (b) Gated Feedback RNN

Figure 1. Illustrations of (a) conventional stacking approach and (b) gated-feedback approach to form a deep RNN architecture. Bullets
in (b) correspond to global reset gates. Skip connections are omitted to simplify the visualization of networks.

The global reset gate is computed as:
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where L is the number of hidden layers, wi!j
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are the weight vectors for the input and the hidden states of
all the layers at time-step t � 1, respectively. For j = 1,
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The global reset gate gi!j is applied collectively to the sig-
nal from the i-th layer hi

t�1 to the j-th layer hj

t

. In other
words, the signal from the layer i to the layer j is controlled
based on the input and the previous hidden states.

Fig. 1 illustrates the difference between the conventional
stacked RNN and our proposed GF-RNN. In both mod-
els, information flows from lower layers to upper layers,
respectively, corresponding to finer timescale and coarser
timescale. The GF-RNN, however, further allows infor-
mation from the upper recurrent layer, corresponding to
coarser timescale, flows back into the lower layers, corre-
sponding to finer timescales.

We call this RNN with a fully-connected recurrent tran-
sition and global reset gates, a gated-feedback RNN (GF-
RNN). In the remainder of this section, we describe how to
use the previously described LSTM unit, GRU, and more
traditional tanh unit in the GF-RNN.

3.1. Practical Implementation of GF-RNN

3.1.1. tanh UNIT

For a stacked tanh-RNN, the signal from the previous
time-step is gated. The hidden state of the j-th layer is

computed by
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where W

j�1!j and U

i!j are the weight matrices of the
incoming connections from the input and the i-th module,
respectively. Compared to Eq. (2), the only difference is
that the previous hidden states are controlled by the global
reset gates.

3.1.2. LONG SHORT-TERM MEMORY AND GATED
RECURRENT UNIT

In the cases of LSTM and GRU, we do not use the global
reset gates when computing the unit-wise gates. In other
words, Eqs. (5)–(7) for LSTM, and Eqs. (9) and (11) for
GRU are not modified. We only use the global reset gates
when computing the new state (see Eq. (4) for LSTM, and
Eq. (10) for GRU).

The new memory content of an LSTM at the j-th layer is
computed by

˜

c

j

t

= tanh

 
W

j�1!j

c

h

j�1
t

+

LX

i=1

g

i!j

U

i!j

c

h

i

t�1

!
.

In the case of a GRU, similarly,
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4. Experiment Settings

4.1. Tasks

We evaluated the proposed gated-feedback RNN (GF-
RNN) on character-level language modeling and Python



36	

A	recent	
improvement	to	
RNNs	



Problem	with	So@max:		
No	Zero	Shot	Word	Predic8ons	

•  Answers	can	only	be	predicted	if	they	were	seen	during	training	
and	part	of	the	soomax	

•  But	it’s	natural	to	learn	new	words	in	an	ac<ve	conversa<on	and	
systems	should	be	able	to	pick	them	up	



Tackling	Obstacle	by	Predic8ng	Unseen	Words		

•  Idea:	Mixture	Model	of	soomax	and	pointers:	

•  Pointer	Sen<nel	Mixture	Models	by	
Stephen	Merity,	Caiming	Xiong,	James	Bradbury,	Richard	
Socher		

Pointer Sentinel Mixture Models

Stephen Merity SMERITY@SALESFORCE.COM
Caiming Xiong CXIONG@SALESFORCE.COM
James Bradbury JAMES.BRADBURY@SALESFORCE.COM
Richard Socher RSOCHER@SALESFORCE.COM

MetaMind - A Salesforce Company, Palo Alto, CA, USA

Abstract

Recent neural network sequence models with
softmax classifiers have achieved their best lan-
guage modeling performance only with very
large hidden states and large vocabularies. Even
then they struggle to predict rare or unseen words
even if the context makes the prediction un-
ambiguous. We introduce the pointer sentinel
mixture architecture for neural sequence models
which has the ability to either reproduce a word
from the recent context or produce a word from a
standard softmax classifier. Our pointer sentinel-
LSTM model achieves state of the art language
modeling performance on the Penn Treebank
(70.9 perplexity) while using far fewer parame-
ters than a standard softmax LSTM. In order to
evaluate how well language models can exploit
longer contexts and deal with more realistic vo-
cabularies and larger corpora we also introduce
the freely available WikiText corpus.1

1. Introduction

A major difficulty in language modeling is learning when
to predict specific words from the immediate context. For
instance, imagine a new person is introduced and two para-
graphs later the context would allow one to very accurately
predict this person’s name as the next word. For standard
neural sequence models to predict this name, they would
have to encode the name, store it for many time steps in
their hidden state, and then decode it when appropriate. As
the hidden state is limited in capacity and the optimization
of such models suffer from the vanishing gradient prob-
lem, this is a lossy operation when performed over many
timesteps. This is especially true for rare words.

Models with soft attention or memory components have
been proposed to help deal with this challenge, aiming to
allow for the retrieval and use of relevant previous hidden

1Available for download at the WikiText dataset site

p(Yellen) = g pvocab(Yellen) + (1 � g) pptr(Yellen)p(Yellen) = g pvocab(Yellen) + (1 � g) pptr(Yellen)
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Figure 1. Illustration of the pointer sentinel-RNN mixture model.
g is the mixture gate which uses the sentinel to dictate how much
probability mass to give to the vocabulary.

states, in effect increasing hidden state capacity and pro-
viding a path for gradients not tied to timesteps. Even with
attention, the standard softmax classifier that is being used
in these models often struggles to correctly predict rare or
previously unknown words.

Pointer networks (Vinyals et al., 2015) provide one poten-
tial solution for rare and out of vocabulary (OoV) words as
a pointer network uses attention to select an element from
the input as output. This allows it to produce previously
unseen input tokens. While pointer networks improve per-
formance on rare words and long-term dependencies they
are unable to select words that do not exist in the input.

We introduce a mixture model, illustrated in Fig. 1, that
combines the advantages of standard softmax classifiers
with those of a pointer component for effective and effi-
cient language modeling. Rather than relying on the RNN
hidden state to decide when to use the pointer, as in the re-
cent work of Gülçehre et al. (2016), we allow the pointer
component itself to decide when to use the softmax vocab-
ulary through a sentinel. The model improves the state of
the art perplexity on the Penn Treebank. Since this com-
monly used dataset is small and no other freely available
alternative exists that allows for learning long range depen-
dencies, we also introduce a new benchmark dataset for
language modeling called WikiText.
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Pointer-Sen8nel	Model	-	Details	Pointer Sentinel Mixture Models

· · ·

 Sentinel

x

RNN Distribution
pvocab(yN |w1, . . . , wN�1)pvocab(yN |w1, . . . , wN�1)

Pointer Distribution
pptr(yN |w1, . . . , wN�1)pptr(yN |w1, . . . , wN�1)

Output Distribution
p(yN |w1, . . . , wN�1)p(yN |w1, . . . , wN�1)

 Sentinel Query

    RNN

  Embed

+

···

···

Softmax

Softmax

· · ·

· · ·

· · ·

Mixture gate gg

Figure 2. Visualization of the pointer sentinel-RNN mixture model. The query, produced from applying an MLP to the last output of the
RNN, is used by the pointer network to identify likely matching words from the past. The � nodes are inner products between the query
and the RNN hidden states. If the pointer component is not confident, probability mass can be directed to the RNN by increasing the
value of the mixture gate g via the sentinel, seen in grey. If g = 1 then only the RNN is used. If g = 0 then only the pointer is used.

2. The Pointer Sentinel for Language

Modeling

Given a sequence of words w1, . . . , wN�1, our task is to
predict the next word wN .

2.1. The softmax-RNN Component

Recurrent neural networks (RNNs) have seen widespread
use for language modeling (Mikolov et al., 2010) due to
their ability to, at least in theory, retain long term depen-
dencies. RNNs employ the chain rule to factorize the joint
probabilities over a sequence of tokens: p(w1, . . . , wN ) =QN

i=1 p(wi|w1, . . . , wi�1). More precisely, at each time
step i, we compute the RNN hidden state hi according to
the previous hidden state hi�1 and the input xi such that
hi = RNN(xi, hi�1). When all the N � 1 words have
been processed by the RNN, the final state hN�1 is fed
into a softmax layer which computes the probability over
a vocabulary of possible words:

pvocab(w) = softmax(UhN�1), (1)

where pvocab 2 RV , U 2 RV ⇥H , H is the hidden size, and
V the vocabulary size. RNNs can suffer from the vanishing
gradient problem. The LSTM (Hochreiter & Schmidhuber,
1997) architecture has been proposed to deal with this by
updating the hidden state according to a set of gates. Our
work focuses on the LSTM but can be applied to any RNN
architecture that ends in a vocabulary softmax.

2.2. The Pointer Network Component

In this section, we propose a modification to pointer net-
works for language modeling. To predict the next word in
the sequence, a pointer network would select the member
of the input sequence p(w1, . . . , wN�1) with the maximal
attention score as the output.

The simplest way to compute an attention score for a spe-
cific hidden state is an inner product with all the past hid-
den states h, with each hidden state hi 2 RH . However, if
we want to compute such a score for the most recent word
(since this word may be repeated), we need to include the
last hidden state itself in this inner product. Taking the in-
ner product of a vector with itself results in the vector’s
magnitude squared, meaning the attention scores would be
strongly biased towards the most recent word. Hence we
project the current hidden state to a query vector q first. To
produce the query q we compute

q = tanh(WhN�1 + b), (2)

where W 2 RH⇥H , b 2 RH , and q 2 RH . To generate the
pointer attention scores, we compute the match between the
previous RNN output states hi and the query q by taking the
inner product, followed by a softmax activation function to
obtain a probability distribution:

zi = qT hi, (3)
a = softmax(z), (4)

where z 2 RL, a 2 RL, and L is the total number of hidden



Pointer	Sen8nel	for	Language	Modeling	
Pointer Sentinel Mixture Models

Model Parameters Validation Test

Mikolov & Zweig (2012) - KN-5 2M‡ � 141.2
Mikolov & Zweig (2012) - KN5 + cache 2M‡ � 125.7
Mikolov & Zweig (2012) - RNN 6M‡ � 124.7
Mikolov & Zweig (2012) - RNN-LDA 7M‡ � 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache 9M‡ � 92.0
Pascanu et al. (2013a) - Deep RNN 6M � 107.5
Cheng et al. (2014) - Sum-Prod Net 5M‡ � 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 86.2 82.7
Zaremba et al. (2014) - LSTM (large) 66M 82.2 78.4
Gal (2015) - Variational LSTM (medium, untied) 20M 81.9 ± 0.2 79.7 ± 0.1
Gal (2015) - Variational LSTM (medium, untied, MC) 20M � 78.6 ± 0.1
Gal (2015) - Variational LSTM (large, untied) 66M 77.9 ± 0.3 75.2 ± 0.2
Gal (2015) - Variational LSTM (large, untied, MC) 66M � 73.4 ± 0.0
Kim et al. (2016) - CharCNN 19M � 78.9
Zilly et al. (2016) - Variational RHN 32M 72.8 71.3

Zoneout + Variational LSTM (medium) 20M 84.4 80.6
Pointer Sentinel-LSTM (medium) 21M 72.4 70.9

Table 2. Single model perplexity on validation and test sets for the Penn Treebank language modeling task. For our models and the
models of Zaremba et al. (2014) and Gal (2015), medium and large refer to a 650 and 1500 units two layer LSTM respectively. The
medium pointer sentinel-LSTM model achieves lower perplexity than the large LSTM model of Gal (2015) while using a third of the
parameters and without using the computationally expensive Monte Carlo (MC) dropout averaging at test time. Parameter numbers with
‡ are estimates based upon our understanding of the model and with reference to Kim et al. (2016).

Model Parameters Validation Test

Variational LSTM implementation from Gal (2015) 20M 101.7 96.3

Zoneout + Variational LSTM 20M 108.7 100.9
Pointer Sentinel-LSTM 21M 84.8 80.8

Table 3. Single model perplexity on validation and test sets for the WikiText-2 language modeling task. All compared models use a two
layer LSTM with a hidden size of 650 and the same hyperparameters as the best performing Penn Treebank model.

was since seeing a word. By integrating the gating func-
tion into the pointer component, we avoid the RNN hidden
state having to maintain this intensive bookkeeping.

7. Conclusion

We introduced the pointer sentinel mixture model and the
WikiText language modeling dataset. This model achieves
state of the art results in language modeling over the Penn
Treebank while using few additional parameters and little
additional computational complexity at prediction time.

We have also motivated the need to move from Penn Tree-
bank to a new language modeling dataset for long range
dependencies, providing WikiText-2 and WikiText-103 as
potential options. We hope this new dataset can serve as a
platform to improve handling of rare words and the usage
of long term dependencies in language modeling.
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•  Recurrent	Neural	Networks	are	powerful	

•  A	lot	of	ongoing	work	right	now	

•  Gated	Recurrent	Units	even	be[er	

•  LSTMs	maybe	even	be[er	(jury	s<ll	out)	

•  This	was	an	advanced	lecture	à	gain	intui<on,	
encourage	explora<on	

•  Next	up:	Midterm	review	
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Another	recent	
improvement	to	
“RNNs”	



RNNs	are	Slow	

•  RNNs	are	the	basic	building	block	for	deepNLP	

•  Idea:	Take	the	best	and	parallelizable	parts	of	RNNs	and	CNNs	

•  Quasi-Recurrent	Neural	Networks	by	
James	Bradbury,	Stephen	Merity,	Caiming	Xiong	&	Richard	
Socher		



Quasi-Recurrent	Neural	Network	

•  Parallelism	computa<on	across	<me:	
	

	 	 	 	 	 	 	 						

•  Element-wise	gated	recurrence	for	parallelism	across	
channels:	

Under review as a conference paper at ICLR 2017
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Figure 1: Block diagrams showing the computation structure of the QRNN compared with typical
LSTM and CNN architectures. Red signifies convolutions or matrix multiplications; a continuous
block means that those computations can proceed in parallel. Blue signifies parameterless functions
that operate in parallel along the channel/feature dimension. LSTMs can be factored into (red) linear
blocks and (blue) elementwise blocks, but computation at each timestep still depends on the results
from the previous timestep.

2 MODEL

Each layer of a quasi-recurrent neural network consists of two kinds of subcomponents, analogous
to convolution and pooling layers in CNNs. The convolutional component, like convolutional layers
in CNNs, allows fully parallel computation across both minibatches and spatial dimensions, in this
case the sequence dimension. The pooling component, like pooling layers in CNNs, lacks trainable
parameters and allows fully parallel computation across minibatch and feature dimensions.

Given an input sequence X 2 RT⇥n of T n-dimensional vectors x1 . . .xT

, the convolutional sub-
component of a QRNN performs convolutions in the timestep dimension with a bank of m filters,
producing a sequence Z 2 RT⇥m of m-dimensional candidate vectors z

t

. In order to be useful for
tasks that include prediction of the next token, the filters must not allow the computation for any
given timestep to access information from future timesteps. That is, with filters of width k, each z

t

depends only on x
t�k+1 through x

t

. This concept, known as a masked convolution (van den Oord
et al., 2016), is implemented by padding the input to the left by the convolution’s filter size minus
one.

We apply additional convolutions with separate filter banks to obtain sequences of vectors for the
elementwise gates that are needed for the pooling function. While the candidate vectors are passed
through a tanh nonlinearity, the gates use an elementwise sigmoid. If the pooling function requires a
forget gate f

t

and an output gate o
t

at each timestep, the full set of computations in the convolutional
component is then:
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Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
which Balduzzi & Ghifary (2016) term “dynamic average pooling”, uses only a forget gate:

h
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Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
which Balduzzi & Ghifary (2016) term “dynamic average pooling”, uses only a forget gate:

h
t

= f
t

� h
t�1 + (1� f

t

)� z
t

, (3)

2

Under review as a conference paper at ICLR 2017

LSTM CNN

LSTM/Linear

Linear

LSTM/Linear

Linear

fo-Pool

Convolution

fo-Pool

Convolution

Max-Pool

Convolution

Max-Pool

Convolution

QRNN

Figure 1: Block diagrams showing the computation structure of the QRNN compared with typical
LSTM and CNN architectures. Red signifies convolutions or matrix multiplications; a continuous
block means that those computations can proceed in parallel. Blue signifies parameterless functions
that operate in parallel along the channel/feature dimension. LSTMs can be factored into (red) linear
blocks and (blue) elementwise blocks, but computation at each timestep still depends on the results
from the previous timestep.

2 MODEL

Each layer of a quasi-recurrent neural network consists of two kinds of subcomponents, analogous
to convolution and pooling layers in CNNs. The convolutional component, like convolutional layers
in CNNs, allows fully parallel computation across both minibatches and spatial dimensions, in this
case the sequence dimension. The pooling component, like pooling layers in CNNs, lacks trainable
parameters and allows fully parallel computation across minibatch and feature dimensions.

Given an input sequence X 2 RT⇥n of T n-dimensional vectors x1 . . .xT

, the convolutional sub-
component of a QRNN performs convolutions in the timestep dimension with a bank of m filters,
producing a sequence Z 2 RT⇥m of m-dimensional candidate vectors z

t

. In order to be useful for
tasks that include prediction of the next token, the filters must not allow the computation for any
given timestep to access information from future timesteps. That is, with filters of width k, each z

t

depends only on x
t�k+1 through x

t

. This concept, known as a masked convolution (van den Oord
et al., 2016), is implemented by padding the input to the left by the convolution’s filter size minus
one.

We apply additional convolutions with separate filter banks to obtain sequences of vectors for the
elementwise gates that are needed for the pooling function. While the candidate vectors are passed
through a tanh nonlinearity, the gates use an elementwise sigmoid. If the pooling function requires a
forget gate f

t

and an output gate o
t

at each timestep, the full set of computations in the convolutional
component is then:

Z = tanh(W
z

⇤X)

F = �(W
f

⇤X)

O = �(W
o

⇤X),

(1)

where W
z

,W
f

, and W
o

, each in Rk⇥n⇥m, are the convolutional filter banks and ⇤ denotes a
masked convolution along the timestep dimension. Note that if the filter width is 2, these equations
reduce to the LSTM-like

z
t

= tanh(W1
z

x
t�1 +W2

z

x
t

)

f
t

= �(W1
f

x
t�1 +W2

f

x
t

)

o
t

= �(W1
o

x
t�1 +W2

o

x
t

).

(2)

Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
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Q-RNNs	for	Language	Modeling	

•  Be[er		

•  Faster	
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Figure 3: Visualization of the final QRNN layer’s hidden state vectors cL
t

in the IMDb task, with
timesteps along the vertical axis. Colors denote neuron activations. After an initial positive statement
“This movie is simply gorgeous” (off graph at timestep 9), timestep 117 triggers a reset of most
hidden states due to the phrase “not exactly a bad story” (soon after “main weakness is its story”).
Only at timestep 158, after “I recommend this movie to everyone, even if you’ve never played the
game”, do the hidden units recover.

each layer, it was more computationally convenient to use a multiple of 32. As the Penn Treebank
is a relatively small dataset, preventing overfitting is of considerable importance and a major focus
of recent research. It is not obvious in advance which of the many RNN regularization schemes
would perform well when applied to the QRNN. Our tests showed encouraging results from zoneout
applied to the QRNN’s recurrent pooling layer, implemented as described in Section 2.1.

The experimental settings largely followed the “medium” setup of Zaremba et al. (2014). Optimiza-
tion was performed by stochastic gradient descent (SGD) without momentum. The learning rate was
set at 1 for six epochs, then decayed by 0.95 for each subsequent epoch, for a total of 72 epochs.
We additionally used L2 regularization of 2 ⇥ 10

�4 and rescaled gradients with norm above 10.
Zoneout was applied by performing dropout with ratio 0.1 on the forget gates of the QRNN, without
rescaling the output of the dropout function. Batches consist of 20 examples, each 105 timesteps.

Comparing our results on the gated QRNN with zoneout to the results of LSTMs with both ordinary
and variational dropout in Table 2, we see that the QRNN is highly competitive. The QRNN without
zoneout strongly outperforms both our medium LSTM and the medium LSTM of Zaremba et al.
(2014) which do not use recurrent dropout and is even competitive with variational LSTMs. This
may be due to the limited computational capacity that the QRNN’s pooling layer has relative to the
LSTM’s recurrent weights, providing structural regularization over the recurrence.

Without zoneout, early stopping based upon validation loss was required as the QRNN would begin
overfitting. By applying a small amount of zoneout (p = 0.1), no early stopping is required and
the QRNN achieves competitive levels of perplexity to the variational LSTM of Gal & Ghahramani

Model Parameters Validation Test

LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) 19M � 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6

Our models
LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 78.3

Table 2: Single model perplexity on validation and test sets for the Penn Treebank language model-
ing task. Lower is better. “Medium” refers to a two-layer network with 640 or 650 hidden units per
layer. All QRNN models include dropout of 0.5 on embeddings and between layers. MC refers to
Monte Carlo dropout averaging at test time.
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Sequence length

32 64 128 256 512

B
a

t
c
h

s
i
z
e

8 5.5x 8.8x 11.0x 12.4x 16.9x

16 5.5x 6.7x 7.8x 8.3x 10.8x

32 4.2x 4.5x 4.9x 4.9x 6.4x

64 3.0x 3.0x 3.0x 3.0x 3.7x

128 2.1x 1.9x 2.0x 2.0x 2.4x

256 1.4x 1.4x 1.3x 1.3x 1.3x

Figure 4: Left: Training speed for two-layer 640-unit PTB LM on a batch of 20 examples of 105
timesteps. “RNN” and “softmax” include the forward and backward times, while “optimization
overhead” includes gradient clipping, L2 regularization, and SGD computations.
Right: Inference speed advantage of a 320-unit QRNN layer alone over an equal-sized cuDNN
LSTM layer for data with the given batch size and sequence length. Training results are similar.

(2016), which had variational inference based dropout of 0.2 applied recurrently. The best perform-
ing variation also used Monte Carlo (MC) dropout averaging at test time of 1000 different masks,
making it computationally expensive to run.

When training on the PTB dataset with an NVIDIA K40 GPU, we found that the QRNN is sub-
stantially faster than a standard LSTM, even when comparing against the optimized cuDNN LSTM.
In Figure 4 we provide a breakdown of the time taken for Chainer’s default LSTM, the cuDNN
LSTM, and QRNN to perform a full forward and backward pass on a single batch during training of
the RNN LM on PTB. For both LSTM implementations, running time was dominated by the RNN
computations, even with the highly optimized cuDNN implementation. For the QRNN implementa-
tion, however, the “RNN” layers are no longer the bottleneck. Indeed, there are diminishing returns
from further optimization of the QRNN itself as the softmax and optimization overhead take equal
or greater time. Note that the softmax, over a vocabulary size of only 10,000 words, is relatively
small; for tasks with larger vocabularies, the softmax would likely dominate computation time.

It is also important to note that the cuDNN library’s RNN primitives do not natively support any form
of recurrent dropout. That is, running an LSTM that uses a state-of-the-art regularization scheme at
cuDNN-like speeds would likely require an entirely custom kernel.

3.3 CHARACTER-LEVEL NEURAL MACHINE TRANSLATION

We evaluate the sequence-to-sequence QRNN architecture described in 2.1 on a challenging neu-
ral machine translation task, IWSLT German–English spoken-domain translation, applying fully
character-level segmentation. This dataset consists of 209,772 sentence pairs of parallel training
data from transcribed TED and TEDx presentations, with a mean sentence length of 103 characters
for German and 93 for English. We remove training sentences with more than 300 characters in
English or German, and use a unified vocabulary of 187 Unicode code points.

Our best performance on a development set (TED.tst2013) was achieved using a four-layer encoder–
decoder QRNN with 320 units per layer, no dropout or L2 regularization, and gradient rescaling to
a maximum magnitude of 5. Inputs were supplied to the encoder reversed. The first encoder layer
used convolutional filter width k = 6, while the other encoder layers used k = 2. Optimization was
performed for 10 epochs on minibatches of 16 examples using Adam (Kingma & Ba, 2014) with
↵ = 0.001, �1 = 0.9, �2 = 0.999, and ✏ = 10

�8. Decoding was performed using beam search with
beam width 8 and length normalization ↵ = 0.6. The modified log-probability ranking criterion is
provided in the appendix.

Results using this architecture were compared to an equal-sized four-layer encoder–decoder LSTM
with attention, applying dropout of 0.2. We again optimized using Adam; other hyperparameters
were equal to their values for the QRNN and the same beam search procedure was applied. Table
3 shows that the QRNN outperformed the character-level LSTM, almost matching the performance
of a word-level attentional baseline.
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Q-RNNs	for	Sen8ment	Analysis	

•  Ooen	be[er	and	faster	
than	LSTMs		

•  More	interpretable	

•  Example:	
•  Ini<al	posi<ve	review	
•  Review	starts	out	posi3ve	

At	117:	“not	exactly	a	bad	story”	
At	158:	“I	recommend	this	movie	to	everyone,	even	if	you’ve	
never	played	the	game”	
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Model Time / Epoch (s) Test Acc (%)

BSVM-bi (Wang & Manning, 2012) � 91.2
2 layer sequential BoW CNN (Johnson & Zhang, 2014) � 92.3
Ensemble of RNNs and NB-SVM (Mesnil et al., 2014) � 92.6
2-layer LSTM (Longpre et al., 2016) � 87.6
Residual 2-layer bi-LSTM (Longpre et al., 2016) � 90.1

Our models
Deeply connected 4-layer LSTM (cuDNN optimized) 480 90.9
Deeply connected 4-layer QRNN 150 91.4
D.C. 4-layer QRNN with k = 4 160 91.1

Table 1: Accuracy comparison on the IMDb binary sentiment classification task. All of our models
use 256 units per layer; all layers other than the first layer, whose filter width may vary, use filter
width k = 2. Train times are reported on a single NVIDIA K40 GPU. We exclude semi-supervised
models that conduct additional training on the unlabeled portion of the dataset.

3 EXPERIMENTS

We evaluate the performance of the QRNN on three different natural language tasks: document-level
sentiment classification, language modeling, and character-based neural machine translation. Our
QRNN models outperform LSTM-based models of equal hidden size on all three tasks while dra-
matically improving computation speed. Experiments were implemented in Chainer (Tokui et al.).

3.1 SENTIMENT CLASSIFICATION

We evaluate the QRNN architecture on a popular document-level sentiment classification bench-
mark, the IMDb movie review dataset (Maas et al., 2011). The dataset consists of a balanced sample
of 25,000 positive and 25,000 negative reviews, divided into equal-size train and test sets, with an
average document length of 231 words (Wang & Manning, 2012). We compare only to other results
that do not make use of additional unlabeled data (thus excluding e.g., Miyato et al. (2016)).

Our best performance on a held-out development set was achieved using a four-layer densely-
connected QRNN with 256 units per layer and word vectors initialized using 300-dimensional cased
GloVe embeddings (Pennington et al., 2014). Dropout of 0.3 was applied between layers, and we
used L2 regularization of 4 ⇥ 10

�6. Optimization was performed on minibatches of 24 examples
using RMSprop (Tieleman & Hinton, 2012) with learning rate of 0.001, ↵ = 0.9, and ✏ = 10

�8.

Small batch sizes and long sequence lengths provide an ideal situation for demonstrating the
QRNN’s performance advantages over traditional recurrent architectures. We observed a speedup
of 3.2x on IMDb train time per epoch compared to the optimized LSTM implementation provided
in NVIDIA’s cuDNN library. For specific batch sizes and sequence lengths, a 16x speed gain is
possible. Figure 4 provides extensive speed comparisons.

In Figure 3, we visualize the hidden state vectors cL
t

of the final QRNN layer on part of an example
from the IMDb dataset. Even without any post-processing, changes in the hidden state are visible
and interpretable in regards to the input. This is a consequence of the elementwise nature of the
recurrent pooling function, which delays direct interaction between different channels of the hidden
state until the computation of the next QRNN layer.

3.2 LANGUAGE MODELING

We replicate the language modeling experiment of Zaremba et al. (2014) and Gal & Ghahramani
(2016) to benchmark the QRNN architecture for natural language sequence prediction. The experi-
ment uses a standard preprocessed version of the Penn Treebank (PTB) by Mikolov et al. (2010).

We implemented a gated QRNN model with medium hidden size: 2 layers with 640 units in each
layer. Both QRNN layers use a convolutional filter width k of two timesteps. While the “medium”
models used in other work (Zaremba et al., 2014; Gal & Ghahramani, 2016) consist of 650 units in
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Figure 3: Visualization of the final QRNN layer’s hidden state vectors cL
t

in the IMDb task, with
timesteps along the vertical axis. Colors denote neuron activations. After an initial positive statement
“This movie is simply gorgeous” (off graph at timestep 9), timestep 117 triggers a reset of most
hidden states due to the phrase “not exactly a bad story” (soon after “main weakness is its story”).
Only at timestep 158, after “I recommend this movie to everyone, even if you’ve never played the
game”, do the hidden units recover.

each layer, it was more computationally convenient to use a multiple of 32. As the Penn Treebank
is a relatively small dataset, preventing overfitting is of considerable importance and a major focus
of recent research. It is not obvious in advance which of the many RNN regularization schemes
would perform well when applied to the QRNN. Our tests showed encouraging results from zoneout
applied to the QRNN’s recurrent pooling layer, implemented as described in Section 2.1.

The experimental settings largely followed the “medium” setup of Zaremba et al. (2014). Optimiza-
tion was performed by stochastic gradient descent (SGD) without momentum. The learning rate was
set at 1 for six epochs, then decayed by 0.95 for each subsequent epoch, for a total of 72 epochs.
We additionally used L2 regularization of 2 ⇥ 10

�4 and rescaled gradients with norm above 10.
Zoneout was applied by performing dropout with ratio 0.1 on the forget gates of the QRNN, without
rescaling the output of the dropout function. Batches consist of 20 examples, each 105 timesteps.

Comparing our results on the gated QRNN with zoneout to the results of LSTMs with both ordinary
and variational dropout in Table 2, we see that the QRNN is highly competitive. The QRNN without
zoneout strongly outperforms both our medium LSTM and the medium LSTM of Zaremba et al.
(2014) which do not use recurrent dropout and is even competitive with variational LSTMs. This
may be due to the limited computational capacity that the QRNN’s pooling layer has relative to the
LSTM’s recurrent weights, providing structural regularization over the recurrence.

Without zoneout, early stopping based upon validation loss was required as the QRNN would begin
overfitting. By applying a small amount of zoneout (p = 0.1), no early stopping is required and
the QRNN achieves competitive levels of perplexity to the variational LSTM of Gal & Ghahramani

Model Parameters Validation Test

LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) 19M � 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6

Our models
LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 78.3

Table 2: Single model perplexity on validation and test sets for the Penn Treebank language model-
ing task. Lower is better. “Medium” refers to a two-layer network with 640 or 650 hidden units per
layer. All QRNN models include dropout of 0.5 on embeddings and between layers. MC refers to
Monte Carlo dropout averaging at test time.
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