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Overview

* Recap of most important concepts & equations

* Machine translation 4o
1/6/70@
(0

e Fancy RNN Models tackling MT: ey,

* Gated Recurrent Units by Cho et al. (2014) - %sm

*  Long-Short-Term-Memories
by Hochreiter and Schmidhuber (1997)



Recap of most important concepts
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Recap of most important concepts
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Recap of most important concepts

Recurrent Neural Networks

ht — O (W(hh)ht_l -+ W(hx)x[t])
Uy = softmax (W(S)ht)
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Cross Entropy Error J(t)(Q) = = Zyt,j log Ut
j=1

Mini-batched SGD  0™¢* = 0°'4 — oV J;.41(0)



Machine Translation

e Methods are statistical

* Use parallel corpora

* European Parliament

* First parallel corpus:

* Rosetta Stone 2

* Traditional systems
are very complex

Picture from Wikipedia



Current statistical machine translation systems

e Source language f, e.g. French
e Target language e, e.g. English
e Probabilistic formulation (using Bayes rule)

é = argmax,p(e| f) = argmax,p(fle)p(e)

e Translation model p(f|e) trained on parallel corpus
e Language model p(e) trained on English only corpus (lots, free!)

French 2 Translation Model - Pieces of English > Language Model
p(f|e) p(e)

Decoder

R - Proper English



Step 1: Alignment

Goal: know which word or phrases in source language
would translate to what words or phrases in target
language? - Hard already!
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Alignment examples from Chris Manning/CS224n
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Step 1: Alignment
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Step 1: Alignment

Really hard :/

The Le
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was
the } appartenait
territory
of aux
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Step 1: Alignment
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Step 1: Alighment

* We could spend an entire lecture on alignment models
* Not only single words but could use phrases, syntax

* Then consider reordering of translated phrases

er geht ja nicht nach hause
er geht ja nicht nach hause
he does not go home

Example from Philipp Koehn
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After many steps

Each phrase in source language has many possible
translations resulting in large search space:

Translation Options

er geht ja nicht nach hause

( ne ) ( IS ) ( yes ) ( not ) ( after ) ( house )
( it ) ( are ) ( IS ) ( donot ) ( to ) ( home )
( , It ) ( goes ) ( ,ofcourse ) ( doesnot ) ( accordingto ) ( chamber )
( , he ) ( go ) ( , ) C Isnot ) ¢ In ) ( athome )
( itis ) ( not ) ( home )
¢ ne will be ) ¢ IS not ) ( under house )
¢ it goes ) ¢ does not ) ( return home )
( he goes ) ( do not ) ( do not )

C E ) ( o )

( are ) ( following )

¢ Is after all ) ( not after )

( does ) ( not to )

( not )

¢ IS not )

( are not )

( IS not a )

13



Decode: Search for best of many hypotheses

Hard search problem that also includes language model

er geht ja nicht nach hause
i,
ves Y
milrrlv
he \}IEEE | 5 rZ-ZI
\ goes [ home
[TTT] H _EEER P
—» age |p M ENT _____HN
does not —» go
W1 A
it | N
~A to
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Traditional MT

* Skipped hundreds of important details
* Alot of human feature engineering

* Very complex systems

* Many different, independent machine learning
problems
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Deep learning to the rescue! ... ?

Maybe, we could translate directly with an RNN?

Awesome
Y1

0000 —

sauce
Y,

Decoder:
Encoder
h, o Mﬁz o m//:;\\
@) @) W o
e S e ’l @
o @) o

0000 0000 0000
Echt dicke Kiste
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0000 —

This needs to
capture the

entire phrase!



MT with RNNs — Simplest Model

Encoder: he = ¢(ht—1,ffit) = f (W(hh)ht_l + W(hx)xt)

Decoder: [t =ohi-1) =1 (W(hh)ht‘l)

Yy = softmax (W(S)ht)

Minimize cross entropy error for all target words
conditioned on source words

N
1
EE (n)|.(n)
mngE og po(y*"™ |z\")

n=1

It’s not quite that simple ;)
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RNN Translation Model Extensions

1. Train different RNN weights for encoding and decoding

Awesome sauce
1 1
o o
h h h —le o
o o
>

vy

@ 010 o

0000 0000 0000
Echt dicke Kiste
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RNN Translation Model Extensions

Notation: Each input of ¢ has its own linear
transformation matrix. Simple: h. = ¢(hi—1) = f (W(hh)ht—l)

Decoder
2. Compute every hidden state in Yo Vs
decoder from T//
- —A
. Previous hidden state (standard) | T

* Last hidden vector of encoder c=h; ?

*  Previous predicted output word y, ,

hpt=odp(hi—1,¢,Yt—1)

Cho et al. 2014
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Different picture, same idea

f= (La, croissance, économique, s'est, ralentie, ces, dernicres, années, .)
[ ] [ ] [ ] [ ]

=
HEEEEE

Word Ssample

[T [ 11—~
]

Word Probability

State
=

Recurrent| Recurrent
State
NN

Continuous-space
Word Representation

g S S S . T
; W ; E E ; ! u Kyunghyun Cho et al. 2014
: 1 u 10 C n

e = (Economic, growth, has, slowed, down, in, recent, years, .)



RNN Translation Model Extensions

3. Train stacked/deep RNNs P
with multiple layers

4. Potentially train
bidirectional encoder h

5. Train input sequence in reverse order for simple

optimization problem: Instead of AB C 2 XY,
train withCBA 2 XY
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6. Main Improvement: Better Units

* More complex hidden unit computation in recurrence!

 Gated Recurrent Units (GRU)
introduced by Cho et al. 2014 (see reading list)

e Main ideas:

* keep around memories to capture long distance
dependencies

* allow error messages to flow at different strengths
depending on the inputs

22



GRUs

* Standard RNN computes hidden layer at next time step
directly: he = f (W<hh>ht_1 + W(hx)azt)

* GRU first computes an update gate (another layer)
based on current input word vector and hidden state

2 =0 (W(Z)aﬁt 4+ U(Z>ht_1>

 Compute reset gate similarly but with different weights
Tt = O (W(T)xt -+ U(T)ht_l)

23



GRUs

24

Update gate w=0 (W(z)xt + U(z)ht—l)
Reset gate re=o (W(%t +U (”ht_l)

New memory content: h: = tanh (Wa, + 70 Uh 1)
If reset gate unit is ~0, then this ignores previous
memory and only stores the new word information

Final memory at time step combines current and
previous time steps: hi =z 0hi_14+ (1 —2z)o0hy



Attempt at a clean illustration

2t =0 (W('Z)xt + U(z)ht_l)
Ty =0 (W(T)aﬁt + U(T)ht_1>

Final memory

h; = tanh (Waxy+ri0Uhg_q)

~

hy = he_ 1 — h
Memory (reset) AR A +( Zt) ot

Update gate

Reset gate

Input:

25



GRU intuition

26

If reset is close to O, % =0 (W(z)"”t * U(zmt‘l)
ignore previous hidden state re=o (W<”’)ast + U(”ht_l)
— Allows model to drop hy = tanh (Wxy + 7 0 Uhy_1)

information that is irrelevant -
. ht:ZtOht_1+(1—Zt>Oht
in the future

Update gate z controls how much of past state should
matter now.

* Ifzclose to 1, then we can copy information in that unit
through many time steps! Less vanishing gradient!

Units with short-term dependencies often have reset
gates very active



GRU intuition
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Units with long term
dependencies have active
update gates z

2t — O (W(z)xt + U(z>ht_1>
e = O (W(T)xt + U(T)ht_l)
h; = tanh (Waxy+ri0Uhg_q)

~

lllustration: <

4

|

() )
(h—"

ht:ZtOht_1+(1—Zt>Oht

0
Derivative of 3 O, 102 ? =2 rest is same chain rule, but
implement W|th modularlzatlon or automatic

differentiation



Long-short-term-memories (LSTMs)

28

We can make the units even more complex

Allow each time step to modify

* Input gate (current cell matters) it =0 (W(%t + U(i)ht—l)

* Forget (gate O, forget past) fe=0 (W(‘f)wt + U(f)ht—l)

*  Output (how much cell is exposed) ot =0 (W(O)wt + U(O)ht—l)

* New memory cell ¢t = tanh (W(C)flft + U(C)ht—l)
Final memory cell: ct = froci1+ipod

Final hidden state: hy = o; o tanh(cy)



Some visualizations

| t |
r N N N
=P = @ > —
CQantD
A ¢ ¢ A
| 0 | [tanh] (O |
\_ /"'Clr _J ’\ /»

&) ® &)

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

By Chris Ola: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

29



Most illustrations a bit overwhelming ;)

net, S, =S +gy"

g gv‘“'@ h  hy*
O —e>0O>0O—e

W

N out = f(netout)

forget =
f(netforget)

forget gate
& in= f(net,) ‘ ST

)

ymi @ youti ey
net,, net,,,
wy AN, AN

Long Short-Term Memory by Hochreiter and Schmidhuber (1997)

y©

S\

w

self-recurrent
connection

» memory cell

memory cell N E—
1/14/20 17 input jS—
http://people.idsia.ch/~juergen/Istm/sId017.htm Input gate output gate

output

http://deeplearning.net/tutorial/lstm.html

Intuition: memory cells can keep information intact, unless inputs makes them

forget it or overwrite it with new input.
Cell can decide to output this information or just store it

30



LSTMs are currently very hip!

* En vogue default model for most sequence labeling
tasks

* Very powerful, especially when stacked and made
even deeper (each hidden layer is already computed
by a deep internal network)

 Most useful if you have lots and lots of data

31



Deep LSTMs compared to traditional systems 2015

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45
Baseline System [29] 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59
Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’ 14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30
Cho et al. [5] 34.54
Best WMT’ 14 result [9] 37.0
Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5
Oracle Rescoring of the Baseline 1000-best lists ~45

Sequence to Sequence Learning by Sutskever et al. 2014
32



Deep LSTMs (with a lot more tweaks)

WMT 2016 competition results from last year

33

Scored Systems

System

Submitter

System Notes

Constraint

Run Notes

uedin-nmt-ensemble (Details)

metamind-ensemble (Details)

uedin-nmt-single (Details)

rsennrich
University of
Edinburgh

BPE neural MT system
with monolingual
training data (back-
translated). ensemble of
4, reranked with right-
to-left model.

yes

34.8

Neural MT system based
on Luong 2015 and
Sennrich 2015, using
Morfessor for subword
splitting, with
back-translated
monolingual
augmentation.
Ensemble of 3
checkpoints from one
run plus 1 Y-LSTM (see
entry).

yes

32.8

rsennrich
University of
Edinburgh

BPE neural MT system
with monolingual
training data (back-
translated). single
model. (contrastive)

yes

32.2

KIT (Details)

uedin-pbt-wmt16-en-de (Details)

Moses Phrase-Based (Details)

uedin-pbt-wmt16-en-de-contrastive

(Details)

Phrase-based MT with
NMT in rescoring

yes

29.7

Matthias Huck
University of
Edinburgh

Phrase-based Moses

yes

29.1

Phrase-based model,
word clusters for all
model components (LM,
OSM, LR, sparse
features), neural
network joint model,
large cc LM

yes

[26-7]

29.0

Matthias Huck
University of
Edinburgh

Phrase-based Moses
(contrastive, 2015
system)

yes

29.0




Deep LSTM for Machine Translation

34

| OJohn admires Mary

PCA of vectors from last time step hidden layer

OMary admires John

OMary is in love with John

OMary respects John

OdJohn is in love with Mary

OdJohn respects Mary

151 . .
O | was given a card by her in the garden
10+ O In the garden , she gave me a card
O She gave me a card in the garden
5 |-
0 |-
-5r O She was given a card by me in the garden
O Inthe garden , | gave her a card
-10f
151 O | gave her a card in the garden
_20 1 1 1 1 1 1 J
-15 -10 -5 0 5 10 15 20

Sequence to Sequence Learning by Sutskever et al. 2014



Further Improvements: More Gates!

Gated Feedback Recurrent Neural Networks, Chung et al. 2015

(a) Conventional stacked RNN (b) Gated Feedback RNN
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A recent

Improvement to
RNNs



Problem with Softmax:
No Zero Shot Word Predictions

e Answers can only be predicted if they were seen during training
and part of the softmax

e Butit’s natural to learn new words in an active conversation and
systems should be able to pick them up



Tackling Obstacle by Predicting Unseen Words

e |dea: Mixture Model of softmax and pointers:

Fed Chair Janet Yellen ... raised rates . Ms. 7??
A A A A A A A A
1 | I
[}
el
£ <
o | | | ! i Sentinel
o — : | N
Pptr(Yellen) g

) - aardvark Bernanke Rosenthal Yellen zebra
£EZ ' ) , ' ' <«
L I !
(@] o ! ‘ H [
0 l_||J-|.—.|_|.—|l_||_||-L|l_| .—.r-|n|_|r||_|r| | T

Dvocab( Yellen)

p(Yellen) = g Pvocab (Yellen) + (1 - g) Dptr (Yellen)

e Pointer Sentinel Mixture Models by
Stephen Merity, Caiming Xiong, James Bradbury, Richard

Socher



Pointer-Sentinel Model - Details

Output Distribution

________________________________________________________________________________

| Mixture gate g ! i
| Pptr(yn|wi _ —~  [TITTL} , |
|

T
e e e e e N e e S

Softmax

]
ii Sentinel G

e et EE R Bl B S
ii Sentinel

RNN

________________________________________________

| Embed

________________________________________________________________

i = thz'a pptr(w) — Z g,

a = softmax(z), i€l (w,x)



Pointer Sentinel for Language Modeling

Model ‘ Parameters Validation Test
Mikolov & Zweig (2012) - KN-5 2M* - 141.2
Mikolov & Zweig (2012) - KNS5 + cache 2M* — 125.7
Mikolov & Zweig (2012) - RNN 6M? — 124.7
Mikolov & Zweig (2012) - RNN-LDA TM* — 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache oOM* — 92.0
Pascanu et al. (2013a) - Deep RNN 6M — 107.5
Cheng et al. (2014) - Sum-Prod Net SM* — 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 86.2 82.7
Zaremba et al. (2014) - LSTM (large) 66M 82.2 78.4
Gal (2015) - Variational LSTM (medium, untied) 20M 81.9+£0.2 79.7+0.1
Gal (2015) - Variational LSTM (medium, untied, MC) 20M — 78.6 £0.1
Gal (2015) - Variational LSTM (large, untied) 66M 779+03 7524+0.2
Gal (2015) - Variational LSTM (large, untied, MC) 66M — 73.4+0.0
Kim et al. (2016) - CharCNN 19M - 78.9
Zilly et al. (2016) - Variational RHN 32M 72.8 71.3
Zoneout + Variational LSTM (medium) 20M 84.4 80.6
Pointer Sentinel-LSTM (medium) 2IM 72.4 70.9




Summary

* Recurrent Neural Networks are powerful
* Alot of ongoing work right now

* Gated Recurrent Units even better
 LSTMs maybe even better (jury still out)

* This was an advanced lecture = gain intuition,
encourage exploration

 Next up: Midterm review
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Another recent

Improvement to
“RNNs”



RNNs are Slow

e RNNs are the basic building block for deepNLP

e |dea: Take the best and parallelizable parts of RNNs and CNNs

e (Quasi-Recurrent Neural Networks by
James Bradbury, Stephen Merity, Caiming Xiong & Richard
Socher



Quasi-Recurrent Neural Network

LSTM CNN QRNN
v v v v v v
Linear Convolution w Convolution F
LSTM/Linear Max-Pool | | fo-Pool — — — — — — >]
Linear Convolution # Convolution #
LSTM/Linear Max-Pool | | fo-Pool [~ — — — — — >]
v v v v

e Parallelism computation across time:

z; = tanh(Wlx;, 1 + Wix,) Z = tanh(W x X)
ft = U(W]lfxt—l + W?Xt) F = O'(Wf * X)
Oy — U(ngt—l + ngt). O = O(WO * X)7

 Element-wise gated recurrence for parallelism across

channels:
h,=f0h, 1+ (1—-1£) Oz,



Q-RNNs for Language Modeling

Better

Faster

Model | Parameters Validation Test
LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) 19M — 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6
Our models

LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 78.3

500 - ;
HE RNN

= 400 - Softmax

o2 Optimization Overhead
©

S 300-

@

€

= 200-

(]

E ]

T
o
S

o

LSTM LSTM (CuDNN) QRNN

Sequence length

32 64 128 256 512

8 | 55x 88 11.0x 124x 16.9x

& 16 | 5.5x  6.7x 7.8x 8.3x 10.8x
'2 32 | 42x 45x 49x  49x  6.4x
S 64 | 3.0x 3.0x 3.0x 3.0x 3.7x
& 128 | 20x 19x  20x 2.0x 24x
256 | 14x 14x 1.3x 1.3x 1.3x




Q-RNNs for Sentiment Analysis

e (Often better and faster Model | Time /Epoch (s) Test Acc (%)
BSVM-bi (Wang & Manning, 2012) - 91.2
21 tial BoW CNN (Joh & Zhang, 2014) — 92.3
than LSTMs Ereomie o RN and DSV (- 01s) |
2-layer LSTM (Longpre et al., 2016) — 87.6
Residual 2-layer bi-LSTM (Longpre et al., 2016) — 90.1
Our models
Deeply connected 4-layer LSTM (cuDNN optimized) 480 90.9
Deeply connected 4-layer QRNN 150 91.4
D.C. 4-layer QRNN with k = 4 160 91.1
* More interpretable - | -
P o AL T] RRERE M | 1 TR L |
U TTERIL T E IR RO
R LU Y Ao A AR | ¥ AT 0 GER LD I T
Exam SUN AR L e i
® Xam e: glso—- I ! ! i !
P g 0 LR
+ Initial positive review - MBI ALELAAAL ARt RRAARID
Hidden units

* Review starts out positive
At 117: “not exactly a bad story”
At 158: “I recommend this movie to everyone, even if you’ve
never played the game”




