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Lecture	Plan:	
Going	forwards	and	backwards

1. Translation,	Machine	Translation,	Neural	Machine	Translation
2. Research highlight: Google’s new NMT
3. Sequence	models	with	attention
4. Sequence	model	decoders

Reminders/comments:	
Midterm	is	over	and	graded	(99%)	J
Assignment	3	is	looming	L
Learn	up	on	GPUs,	Azure,	Docker
Final	project	discussions	– come	meet	with	us!



1. Machine Translation

The classic test of language understanding!
Both language analysis & generation

Big MT needs … for humanity … and commerce
Translation is a US$40 billion a year industry

Huge in Europe, growing in Asia
Large social/government/military 
as well as commercial needs
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The need for machine translation

Huge commercial use
Google translates over 100 billion words a day

Facebook in 2016 rolled out new homegrown MT
“When we turned [MT] off for some people, they 
went nuts!”

eBay uses MT to enable cross-border trade
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http://www.commonsenseadvisory.com/AbstractView.aspx?ArticleID=36540
https://googleblog.blogspot.com/2016/04/ten-years-of-google-translate.html
https://techcrunch.com/2016/05/23/facebook-translation/



What is Neural MT (NMT)?

Neural Machine Translation is the 
approach of modeling the entire MT 
process via one big artificial neural 
network*

*But sometimes we compromise this goal a little
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Neural encoder-decoder architectures
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Neural MT: The Bronze Age
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[Allen 1987 IEEE 1st ICNN]

3310 En-Es pairs constructed on 31 
En, 40 Es words, max 10/11 word 
sentence; 33 used as test set

The grandfather offered the little girl a book ➔
El abuelo le ofrecio un libro a la nina pequena

Binary encoding of words – 50 
inputs, 66 outputs; 1 or 3 hidden 
150-unit layers. Ave WER: 1.3 words



Neural MT: The Bronze Age
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[Chrisman 1992 Connection Science]

Dual-ported RAAM architecture 
[Pollack 1990 Artificial Intelligence] 
applied to corpus of 216 parallel 
pairs of simple En-Es sentences:

You are not angry ⬌Usted no esta furioso

Split 50/50 as train/test, 75% of 
sentences correctly translated!



Modern Sequence Models for NMT
[Sutskever et al. 2014, cf. Bahdanau et al. 2014, et seq.]

am a student _ Je suis étudiant

Je suis étudiant _

I

Encoder Decoder
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Die     Proteste    waren am  Wochenende eskaliert <EOS>  The      protests   escalated   over        the     weekend
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The      protests  escalated    over         the      weekend   <EOS>

Modern Sequence Models for NMT
[Sutskever et al. 2014, cf. Bahdanau et al. 2014, et seq.]

Encoder:
Builds up 
sentence 
meaning 

Source 
sentence

Translation 
generated

Feeding in 
last word

A deep recurrent neural network

Decoder



2017-02-1611

Le chat assis sur le tapis.

The cat sat on the mat.?

Encoder

Y

Conditional Recurrent Language Model



• Read a source sentence one symbol at a time.
• The last hidden state     summarizes the entire source sentence.
• Any recurrent activation function can be used: 

• Hyperbolic tangent 
• Gated recurrent unit [Cho et al., 2014]

• Long short-term memory [Sutskever et al., 2014]

• Convolutional network [Kalchbrenner & Blunsom, 2013]

h0 h1 h2 h3 h7…

Le chat assis .

Y

tanh

Recurrent Neural Network Encoder



• Usual recurrent language model, except
1. Transition
2. Backpropagation 

X

t

@zt/@Y

• Same learning strategy as usual: MLE with SGD 

L(✓, D) =

1

N

NX

n=1

TnX

t=1

log p(x

n
t |xn

1 , . . . , x
n
t�1, Y )

Decoder: Recurrent Language Model

…

The cat sat

The cat sat on

z0 z1 z2 z3

Y = h7

zt = f(zt�1, xt, Y )



Progress in Machine Translation
[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]
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From [Sennrich 2016, http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf] 



Neural MT went from a fringe 
research activity in 2014 to the 
widely-adopted leading way to 

do MT in 2016.

Amazing !

15



Four big wins of Neural MT

1. End-to-end training
All parameters are simultaneously optimized to minimize 
a loss function on the network’s output 

2. Distributed representations share strength
Better exploitation of  word and phrase similarities

3. Better exploitation of context
NMT can use a much bigger context – both source and 
partial target text – to translate more accurately

4. More fluent text generation
Deep learning text generation is much higher quality

16



What wasn’t on that list?

1. Black box component models for 
reordering, transliteration, etc.

2. Explicit use of syntactic or 
semantic structures

3. Explicit use of discourse 
structure, anaphora, etc.

17



Statistical/Neural Machine Translation
A marvelous use of big data but….

1519年600名西班牙人在墨西哥登陆，去征服几百万
人口的阿兹特克帝国，初次交锋他们损兵三分之二。
In 1519, six hundred Spaniards landed in Mexico to conquer the Aztec Empire with a 
population of a few million. They lost two thirds of their soldiers in the first clash.

translate.google.com (2009): 1519 600 Spaniards landed in Mexico, millions of people to 
conquer the Aztec empire, the first two-thirds of soldiers against their loss.
translate.google.com (2011): 1519 600 Spaniards landed in Mexico, millions of people to 
conquer the Aztec empire, the initial loss of soldiers, two thirds of their encounters.
translate.google.com (2013): 1519 600 Spaniards landed in Mexico to conquer the Aztec 
empire, hundreds of millions of people, the initial confrontation loss of soldiers two-thirds.
translate.google.com (2014/15/16): 1519 600 Spaniards landed in Mexico, millions of 
people to conquer the Aztec empire, the first two-thirds of the loss of soldiers they clash.

translate.google.com (2017): In 1519, 600 Spaniards landed in Mexico, to conquer the 
millions of people of the Aztec empire, the first confrontation they killed two-thirds.



Adoption!!!  NMT aggressively 
rolled out by industry!
2016/02, Microsoft launches deep neural network MT 
running offline on Android/iOS. [Link to blog]

2016/08, Systran launches purely NMT model [Link to 
press release]

2016/09, Google launches NMT [Link to blog post]
With much more hype and gross overclaims of equaling 
human translation quality
Great New York Times Magazine feature
Paper on the research: https://arxiv.org/abs/1611.04558

19



Google’s Multilingual Neural Machine Translation 
System: 
Enabling Zero-Shot Translation

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, 
Yonghui Wu, Zhifeng Chen, Nikhil Thorat,Fernanda Viégas, Martin 
Wattenberg, Greg Corrado, Macduff Hughes, Jeffrey Dean

Presented by: Emma Peng



State-of-the-art: 
Neural Machine Translation (NMT)



Multilingual NMT? Previously...

Multiple Encoders → Multiple 
Decoders [1]

Shared Encoder → Multiple Decoder [2]

Er-Es Encoder Er-Es Decoder

Er-NL Encoder Er-NL Decoder

Er-Fr Encoder Er-Fr Decoder

Es-Er Encoder

NL-Er Encoder Shared Decoder

Fr-Er Encoder

Multiple Encoders → Shared 
Decoder [3]



Google’s Multilingual NMT System Benefits

● Simplicity: single model

● Low-resource language 

improvements

● Zero-shot translation



Google’s Multilingual NMT System Architecture



Google’s Multilingual NMT System Architecture

Artificial token at the beginning of the input 
sentence to indicate the target language

Add <2es> to indicate that 
Spanish is the target language



Google’s Multilingual NMT System Experiments

● WMT’14:

○ Comparable performance: English → French

○ State-of-the-art: English → German, French → English

● WMT’15:

○ State-of-the-art: German → English



Google’s Multilingual NMT System Zero-Shot Translation

● Train:
○ Portuguese → English, English → Spanish (Model 1)
○ Or, English ←→ {Portuguese, Spanish} (Model 2)

● Test:
○ Portuguese → Spanish Zero-Shot!



Thank you!



3. Introducing Attention:
Vanilla seq2seq & long sentences

29

Problem: fixed-dimensional representation Y

am a student _ Je suis étudiant

Je suis étudiant _

I



Attention Mechanism

• Solution: random access memory
• Retrieve as needed.

am a student _ Je suis étudiant

Je suis étudiant _

I

Pool of 
source 
states

30

Started in computer vision!
[Larochelle & Hinton, 2010],
[Denil, Bazzani, Larochelle, 

Freitas, 2012]



Word alignments

The
balance

was
the

territory
of

the
aboriginal

people

Le
reste

appartenait

aux

autochtones

The
balance

was
the

territory
of

the
aboriginal

people
Le re

st
e

ap
pa

rte
na

it
au

x
au

to
ch

to
ne

s

Phrase-based SMT aligned words in a 
preprocessing-step, usually using EM



Dzmitry Bahdanau, KyungHuyn Cho, and Yoshua Bengio. Neural Machine 
Translation by Jointly Learning to Translate and Align. ICLR’15.32

Learning both 
translation & alignment



am a student _ Je

suis

I

Attention Layer

Context 
vector

?

Simplified version of (Bahdanau et al., 2015)
33

Attention Mechanism



• Compare target and source hidden states.

am a student _ Je

suis

I

Attention Layer

Context 
vector

?

3

34

Attention Mechanism – Scoring



• Compare target and source hidden states.

am a student _ Je

suis

I

Attention Layer

Context 
vector

?

53

35

Attention Mechanism – Scoring



• Compare target and source hidden states.

am a student _ Je

suis

I

Attention Layer

Context 
vector

?

13 5
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Attention Mechanism – Scoring



• Compare target and source hidden states.

am a student _ Je

suis

I

Attention Layer

Context 
vector

?

13 5 1
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Attention Mechanism – Scoring



• Convert into alignment weights.

am a student _ Je

suis

I

Attention Layer

Context 
vector

?

0.10.3 0.5 0.1
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Attention Mechanism – Normalization



am a student _ Je

suis

I

Context vector

• Build context vector: weighted average.

?

39

Attention Mechanism – Context



am a student _ Je

suis

I

Context vector

• Compute the next hidden state.
40

Attention Mechanism – Hidden State



• Simplified mechanism & more functions:

41
Thang Luong, Hieu Pham, and Chris Manning. Effective Approaches to 

Attention-based Neural Machine Translation. EMNLP’15.

Attention Mechanisms+



• Simplified mechanism & more functions:
Bilinear form: 
well-adopted.

42

Attention Mechanisms+



• Avoid focusing on everything at each time

Global: all source states. Local: subset of source states.

Potential for long sequences!

43
Thang Luong, Hieu Pham, and Chris Manning. Effective Approaches to 

Attention-based Neural Machine Translation. EMNLP’15.

Global vs. Local



Better Translation of Long Sentences

10 20 30 40 50 60 70
10

15

20

25

Sent Lengths

BL
EU

��
��

�

 

 

ours, no attn (BLEU 13.9)
ours, local−p attn (BLEU 20.9)
ours, best system (BLEU 23.0)
WMT’14 best (BLEU 20.7)
Jeans et al., 2015 (BLEU 21.6)

No Attention

Attention

44



Sample English-German translations

• Translates names correctly.

source Orlando Bloom and Miranda Kerr still love each other 

human Orlando Bloom und Miranda Kerr lieben sich noch immer

+attn Orlando Bloom und Miranda Kerr lieben einander noch
immer . 

base
Orlando Bloom und Lucas Miranda lieben einander noch
immer . 

45



Sample English-German translations

• Translates a doubly-negated phrase correctly.
“passenger experience”.

source
We ′ re pleased the FAA recognizes that an enjoyable passenger experience is 
not incompatible with safety and security , said Roger Dow , CEO of the U.S. 
Travel Association . 

human
Wir freuen uns , dass die FAA erkennt , dass ein angenehmes
Passagiererlebnis nicht im Wider- spruch zur Sicherheit steht , sagte Roger 
Dow , CEO der U.S. Travel Association . 

+attn
Wir freuen uns , dass die FAA anerkennt , dass ein angenehmes ist nicht mit
Sicherheit und Sicherheit unvereinbar ist , sagte Roger Dow , CEO der US -
die . 

base
Wir freuen uns u ̈ber die <unk> , dass ein <unk> <unk> mit Sicherheit nicht 
vereinbar ist mit Sicherheit und Sicherheit , sagte Roger Cameron , CEO der 
US - <unk> . 

46



Sample English-German translations

• Translates a doubly-negated phrase correctly.
“passenger experience”.

source
We ′ re pleased the FAA recognizes that an enjoyable passenger experience is 
not incompatible with safety and security , said Roger Dow , CEO of the U.S. 
Travel Association . 

human
Wir freuen uns , dass die FAA erkennt , dass ein angenehmes
Passagiererlebnis nicht im Wider- spruch zur Sicherheit steht , sagte Roger 
Dow , CEO der U.S. Travel Association . 

+attn
Wir freuen uns , dass die FAA anerkennt , dass ein angenehmes ist nicht mit
Sicherheit und Sicherheit unvereinbar ist , sagte Roger Dow , CEO der US -
die . 

base
Wir freuen uns u ̈ber die <unk> , dass ein <unk> <unk> mit Sicherheit nicht 
vereinbar ist mit Sicherheit und Sicherheit , sagte Roger Cameron , CEO der 
US - <unk> . 
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More Attention! The idea of coverage

• Caption generation

48

How to not miss an 
important image patch?

Xu, Ba, Kiros, Cho, Courville, Salakhutdinov, Zemel, Bengio. Show, Attend and 
Tell: Neural Image Caption Generation with Visual Attention. ICML’15



Doubly attention

49

Sum across 
caption words

Per image patch

• Sum to 1 in both dimensions

Xu, Ba, Kiros, Cho, Courville, Salakhutdinov, Zemel, Bengio. Show, Attend and 
Tell: Neural Image Caption Generation with Visual Attention. ICML’15

= 1

≃ 1

Coverage set 
exists long time 

ago in SMT!



Extending attention with linguistic ideas 
previously in alignment models
• [Tu, Lu, Liu, Liu, Li, ACL’16]: NMT model with 

coverage-based attention
• [Cohn, Hoang, Vymolova, Yao, Dyer, Haffari, 

NAACL’16]: More substantive models of attention 
using: position (IBM2) + Markov (HMM) + fertility 
(IBM3-5) + alignment symmetry (BerkeleyAligner)

50
Source word fertilityPer source word



• Simple and exact decoding algorithm
• Score each and every possible translation
• Pick the best one

51

h0 h1 h2 h3 h7
…

Le chat assis .

…

The cat sat

The cat sat on

z0 z1 z2 z3
DO NOT EVEN THINK 
of TRYING IT OUT!*

* Perhaps with quantum computer and quantum annealing?

4. Sequence Model Decoders:
Decoding (0) – Exhaustive Search



Decoding (1) – Ancestral Sampling

• One symbol at a time from 
• Until 
• Repeat

52

x̃t ⇠ xt|xt�1, . . . , x1, Y

x̃t = heosi

…

The cat sat

z0 z1 z2 z3

Y = h7

x0|Y x1|x0, Y x2|x1, x0, Y



53

• Pros:
1. Efficient and unbiased (asymptotically exact)

• Cons:
1. High variance
2. Pretty inefficient

Decoding (1) – Ancestral Sampling

The cat sat

z0 z1 z2 z3

Y = h7

x0|Y x1|x0, Y x2|x1, x0, Y



Decoding (2) – Greedy Search

• Efficient, but heavily suboptimal search
• Pick the most likely symbol each time

• Until 

54

x̃t = heosi

x̃

t

= argmax

x

log p(x|x
<t

, Y )

• Pros:
1. Super-efficient
• Both computation and memory

• Cons:
1. Heavily suboptimal



Decoding (3) 
– Beam Search

• Pretty, but not very efficient
• Maintain K hypotheses at a time

• Expand each hypothesis

• Pick top-K hypotheses from the union                              where

55

Y in Eq. (4) can be anything from a sentence in another language (machine translation), an image
(image caption generation), a video clip (video description generation) to speech (speech recogni-
tion). In any of those cases, a previously described recurrent language model requires only a slightest
tweak in order to take into account Y .

The tweak is to compute the internal hidden state of the recurrent language model based not only on
ht�1 and E [xt] (see Eq. (2)) but also on Y such that

ht = � (ht�1,E [xt] , f(Y, t)) , (5)

where f is a time-dependent function that maps from Y to a vector. Furthermore, we can make gj
in Eq. (3) to be conditioned on Y as well

p(xt+1 = j|xt) =
exp(gj(ht, f(Y, t)))

P|V |
j0=1 exp(gj0(ht, f(Y, t)))

. (6)

Learning Given a data set D of pairs (X,Y ), the conditional recurrent language model is trained
to maximize the log-likelihood function which is defined as

L(✓) = 1

|D|
NX

n=1

TnX

t=1

log p(xn
t |xn

<t, Y
n
).

This maximization is often done by stochastic gradient descent with the gradient computed by
backpropagation [23]. Instead of a scalar learning rate, adaptive learning rate methods, such as
Adadelta [27] and Adam [14], are often used.

3 Decoding

Decoding in a conditional recurrent language model corresponds to finding a target sequence ˜X that
maximizes the conditional probability p(X|Y ) from Eq. (4):

˜X = argmax

X
log p(X|Y ).

As is clear from the formulation in Eqs. (5)–(6), exact decoding is intractable, as the state space of
X grows exponentially with respect to the length of the sequence, i.e., |X | = O(|V ||X|

), without
any trivial structure that can be exploited. Thus, we must resort to approximate decoding.

3.1 Greedy Decoding

Greedy decoding is perhaps the most naive way to approximately decode from the conditional re-
current language model. At each time step, it greedily selects the most likely symbol under the
conditional probability:

x̃t = argmax

j
log p(xt = j|x̃<t). (7)

This continues until a special marker indicating the end of the sequence is selected.

This greedy approach is computationally efficient, but is likely too crude. Any early choice based
on a high conditional probability can easily turn out to be unlikely one due to low conditional
probabilities later on. This issue is closely related to the garden path sentence problem (see Sec. 3.2.4
of [17].)

3.2 Beam Search

Beam search improves upon the greedy decoding strategy by maintaining K hypotheses at each time
step, instead of a single one. Let

Ht�1 =

�
(x̃1

1, x̃
1
2, . . . , x̃

1
t�1), (x̃

2
1, x̃

2
2, . . . , x̃

2
t�1), . . . , (x̃

K
1 , x̃K

2 , . . . , x̃K
t�1)
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be a set of current hypotheses at time t. Then, from each current hypothesis the following |V |
candidate hypotheses are generated:

Hk
t =

�
(x̃k

1 , x̃
k
2 , . . . , x̃

k
t�1, v1), (x̃

k
1 , x̃

k
2 , . . . , x̃

k
t�1, v2), . . . , (x̃

k
1 , x̃

k
2 , . . . , x̃

k
t�1, v|V |)

 
,

where vj denotes the j-th symbols in the vocabulary V .

The top-K hypotheses from the union of all such hypotheses sets Hk
t , k = 1, . . . ,K are selected

based on their scores. In other words,

Ht = [K
k=1Bk,

where

Bk = argmax

X̃2Ak

log p( ˜X|Y ), Ak = Ak�1 � Bk�1, and A1 = [K
k0=1Hk0

t .

Among the top-K hypotheses, we consider the ones whose last symbols are the special marker for
the end of sequence to be complete and stop expanding such hypotheses. All the other hypotheses
continue to be expanded, however, with K reduced by the number of complete hypotheses. When
K reaches 0, the beam search ends, and the best one among all the complete hypotheses is returned.

4 NPAD: Noisy Parallel Approximate Decoding

In this section, we introduce a strategy that can be used in conjunction with the two decoding strate-
gies discussed earlier. This new strategy is motivated by the fact that a deep neural network, in-
cluding a recurrent neural network, learns to stretch the input manifold (on which only likely input
examples lie) and fill the hidden state space with it. This implies that a neighbourhood in the hidden
state space corresponds to a set of semantically similar configurations in the input space, regardless
of whether those configurations are close to each other in the input space [6]. In other words, small
perturbation in the hidden space corresponds to jumping from one plausible configuration to another.

In the case of conditional recurrent language model, we can achieve this behaviour of efficiently
exploration across multiple modes by injecting noise to the transition function of the recurrent neural
network. In other words, we replace Eq. (5) with

ht = � (ht�1 + ✏t,E [xt] , f(Y, t)) , (8)

where
✏t ⇠ N (0,�2

t I).

The time-dependent standard deviation �t should be selected to reflect the uncertainty dynamics in
the conditional recurrent language model. As the recurrent network models a target sequence in one
direction, uncertainty is often greatest when predicting earlier symbols and gradually decreases as
more and more context becomes available for the conditional distribution p(yt|y<t). This naturally
suggests a strategy where we start with a high level of noise (high �t) and anneal it (�t ! 0) as the
decoding progresses. One such scheduling scheme is

�t =
�0

t
,

where �0 is an initial noise level. Although there are many alternatives, we find this simple formu-
lation to be effective in experiments later.

We run M such noisy decoding processes in parallel. This can be done easily and efficiently, as
there is no communication between these parallel processes except at the end of the decoding pro-
cessing. Let us denote by ˜Ym a sequence decoded from the m-th decoding process. Among these
M hypotheses, we select the one with the highest probability assigned by the non-noisy model:

˜Y = argmax

Ỹm:m=1,...,M

log p( ˜Ym|X).

We call this decoding strategy, based on running multiple parallel approximate decoding processes
with noise injected, noisy parallel approximate decoding (NPAD).
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where vj denotes the j-th symbols in the vocabulary V .

The top-K hypotheses from the union of all such hypotheses sets Hk
t , k = 1, . . . ,K are selected

based on their scores. In other words,

Ht = [K
k=1Bk,

where

Bk = argmax

X̃2Ak

log p( ˜X|Y ), Ak = Ak�1 � Bk�1, and A1 = [K
k0=1Hk0

t .

Among the top-K hypotheses, we consider the ones whose last symbols are the special marker for
the end of sequence to be complete and stop expanding such hypotheses. All the other hypotheses
continue to be expanded, however, with K reduced by the number of complete hypotheses. When
K reaches 0, the beam search ends, and the best one among all the complete hypotheses is returned.

4 NPAD: Noisy Parallel Approximate Decoding

In this section, we introduce a strategy that can be used in conjunction with the two decoding strate-
gies discussed earlier. This new strategy is motivated by the fact that a deep neural network, in-
cluding a recurrent neural network, learns to stretch the input manifold (on which only likely input
examples lie) and fill the hidden state space with it. This implies that a neighbourhood in the hidden
state space corresponds to a set of semantically similar configurations in the input space, regardless
of whether those configurations are close to each other in the input space [6]. In other words, small
perturbation in the hidden space corresponds to jumping from one plausible configuration to another.

In the case of conditional recurrent language model, we can achieve this behaviour of efficiently
exploration across multiple modes by injecting noise to the transition function of the recurrent neural
network. In other words, we replace Eq. (5) with
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where
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The time-dependent standard deviation �t should be selected to reflect the uncertainty dynamics in
the conditional recurrent language model. As the recurrent network models a target sequence in one
direction, uncertainty is often greatest when predicting earlier symbols and gradually decreases as
more and more context becomes available for the conditional distribution p(yt|y<t). This naturally
suggests a strategy where we start with a high level of noise (high �t) and anneal it (�t ! 0) as the
decoding progresses. One such scheduling scheme is
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where �0 is an initial noise level. Although there are many alternatives, we find this simple formu-
lation to be effective in experiments later.

We run M such noisy decoding processes in parallel. This can be done easily and efficiently, as
there is no communication between these parallel processes except at the end of the decoding pro-
cessing. Let us denote by ˜Ym a sequence decoded from the m-th decoding process. Among these
M hypotheses, we select the one with the highest probability assigned by the non-noisy model:
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We call this decoding strategy, based on running multiple parallel approximate decoding processes
with noise injected, noisy parallel approximate decoding (NPAD).
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Decoding (3) 
– Beam Search

• Asymptotically exact, as
• But, not necessarily monotonic improvement w.r.t.  
• K should be selected to maximize the translation quality on a 

validation set.
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K ! 1
K



Decoding

• En-Cz: 12m training sentence pairs

57 [Cho, arXiv 2016]

Strategy # Chains
Valid Set Test Set

NLL BLEU NLL BLEU

Ancestral Sampling 50 22.98 15.64 26.25 16.76

Greedy Decoding - 27.88 15.50 26.49 16.66

Beamsearch 5 20.18 17.03 22.81 18.56

Beamsearch 10 19.92 17.13 22.44 18.59



Decoding

• Greedy Search
• Computationally efficient
• Not great quality

• Beam Search
• Computationally expensive
• Not easy to parallelize
• Much better quality

58

Beam search with a small beam is de facto standard in NMT

[Cho, arXiv 2016]
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